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Abstract—A two-way subtable sum model is a statis-
tical model for two-way contingency tables such that
sufficient statistics for the model are row sums, column
sums and an additional constraint that the sum of a
subtable is also fixed. From a statistical viewpoint this
model is related to a block interaction model, a two-
way change-point model proposed by Hirotsu, and the
quasi-independence model for incomplete two-way con-
tingency tables which contain some structural zeros.
When the set of square-free moves of degree two does
not form a Markov basis, we know that the semigroup
generated by columns of the design matrix for the suf-
ficient statistics of the model is not normal. One such
model is the common diagonal effect model. In this
paper, we first summarize the results in [Takemura and
Yoshida, 2007] and then we study how the difference
between the semigroup generated by columns of the
design matrix for a common diagonal effect model and
its saturation are distributed.

keyword: contingency tables, Hilbert
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1 INTRODUCTION

Let A = {a1, . . . ,an}, ai ∈ Z
d, i = 1, . . . , n,

be a finite set of integral points and
let Q = Q(A) denote the commutative
semigroup generated by a1, . . . ,an. In our
previous paper [Takemura and Yoshida,
2007, 2008] we studied properties of holes,
which are the difference between the
semigroup and its saturation. We gave
some necessary and sufficient conditions
for the finiteness of the set of holes and
also we gave detailed descriptions of how
holes are located and when there are
infinitely many holes.

Recently Hara et al. [2007] considered
Markov bases for two-way contingency
tables with fixed row sums, column sums
and an additional constraint that the sum
of a subtable is also fixed. We call this
problem a two-way subtable sum problem.
From a statistical viewpoint this problem
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is motivated by a block interaction model
or a two-way change-point model pro-
posed by [Hirotsu, 1997], which has been
studied from both theoretical and practi-
cal viewpoints [Ninomiya, 2004] and has
important applications to dose-response
clinical trials with ordered categorical re-
sponses. It has been well-known that for
two-way contingency tables with fixed
row sums and column sums, the set of
square-free moves of degree two forms a
Markov basis. However when we impose
an additional constraint that the sum of
a subtable is also fixed, then these moves
do not necessarily form a Markov basis.
Hara et al. [2007] showed a necessary and
sufficient condition on a subtable so that
a corresponding Markov basis consists of
square-free moves of degree two. Shortly
after that Ohsugi and Hibi showed that
the semigroup generated by the columns
of the design matrix for a subtable sum
problem is normal (i.e., there is no hole) if
and only if a set of square-free moves of
degree two forms a Markov basis [Ohsugi
and Hibi, 2007].
The common diagonal effect model
(CDEM) models diagonal effects which
arise mainly in analyzing contingency
tables with common categories for the
rows and the columns [Hara et al.,
2008]. Under the CDEM, we consider
contingency tables with fixed row
sums, column sums, and an additional
constraint that the sum of diagonal
cells is also fixed. Note that a set of
square-free moves of degree two does
not form a Markov basis for the design
matrix under the CDEM. Therefore, the
semigroup generated by the columns of
the design matrix for the CDEM is not
normal by the results from [Ohsugi and
Hibi, 2007].
In this paper we focus on the semi-
group generated by the columns of the
design matrix for the CDEM and we will
study details of the distribution of the

holes using the methods in [Takemura
and Yoshida, 2007, 2008]. This paper is
organized as follows: in section 2 we
will summarize the previous results from
[Takemura and Yoshida, 2007, 2008]. In
Section 3 we will show our main theorem
on holes of the semigroups for the CDEM
and some computational results.

2 BASIC NOTATION AND DEFINI-
TIONS

In this section we summarize some rele-
vant definitions and results from [Take-
mura and Yoshida, 2007, 2008]. For more
details, see [Takemura and Yoshida, 2007,
2008].
LetK = cone(a1, . . . ,an) be the rational
polyhedral cone generated by a1, . . . ,an

and let L ⊂ Z
d denote the lattice gener-

ated by them. The saturation Qsat of Q is
defined by Qsat = K ∩ L. The elements
of H = Qsat \ Q are called holes of Q.
We assume that K is a pointed cone with
non-empty interior. In many examples L
coincides with Z

d and in this case let B
denote the unique minimal Hilbert basis
of K (i.e., the unique minimal generator
of K ∩ Z

d). In the following we simply
say the Hilbert basis instead of the unique
minimal Hilbert basis.
We call a ∈ Qsat, a 6= 0, a funda-
mental hole if Qsat ∩ (a + (−Q)) = {a}.
Let H0 be the set of all fundamental
holes in Q. H0 is always finite for any
given semigroup by Proposition 3.1 in
Takemura and Yoshida [2008]. a ∈ Q is
called a saturation point if a + Qsat ⊂ Q.
Let S be the set of all saturation points
of the semigroup Q. Let S̄ = Q \ S =
non-saturation points of Q. Under the as-
sumption that K is pointed, S is non-
empty by Problem 7.15 of [Miller and
Sturmfels, 2005].
First we state one of the results from
[Takemura and Yoshida, 2008]. In the fol-
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lowing theorem we assume that L = Z
d

without essential loss of generality.

Theorem 2.1. Let B = {b1, . . . , bL} denote
the Hilbert basis of K. If bl + λai ∈ Q for
some λ ∈ Z let

µ̄li = min{λ ∈ Z | bl + λai ∈ Q}

and µ̄li = ∞ otherwise. H is finite if and
only if µ̄li < ∞ for all l = 1, . . . , L and all
i = 1, . . . , n.

Remark 2.2. Let bh ∈ B but bh 6∈ Q. For
each 1 ≤ i ≤ n, let

Q̃(i) = {
∑

j 6=i

λjaj | λj ∈ N, j 6= i}

be the semigroup spanned by aj, j 6= i.
Furthermore write

Q̄(i) = Zai + Q̃(i).

For each h and i, µ̄hi is finite if and only if
bh ∈ Q̄(i). Since bh is a hole, we actually only
need to check

bh ∈ (−Nai) + Q̃(i).

But (−Nai) + Q̃(i) is another semigroup,
where ai in A is replaced by −ai. Therefore
this problem is a standard membership prob-
lem in a semigroup.

We call a face F of K almost saturated
if there exists a saturation point of Q =
Q(A) on F . Otherwise (i.e., if no point of
F is a saturation point) we call F nowhere
saturated. We now state the following re-
sult from Takemura and Yoshida [2007].
Again we assume L = Z

d.

Theorem 2.3. A face F is nowhere saturated
if and only if for some element b of the Hilbert
basis B

b = x1a1 + · · · + xnan, (1)

xj ∈ Z,∀j, and xj ≥ 0 for aj 6∈ F.

does not have a feasible solution.

In the next section, we are going to
apply Theorem 2.1 and Theorem 2.3 to
design matrices for contingency tables
under the CDEM.

3 APPLICATIONS TO CONTIN-
GENCY TABLES UNDER THE CDEM

Now we consider R×C tables with fixed
row sums, column sums, and the diago-
nal sum and we investigate (1) whether
the set of holes in Q of each design matrix
of a table is finite or infinite by Theorem
2.1 and (2) which faces of the polyhedral
cone defined by this matrix are almost
saturated or nowhere saturated by The-
orem 2.3.

To compute minimal Hilbert bases of
cones, we used normaliz [Bruns and
Koch, 2001] and to compute each hyper-
plane representation and vertex represen-
tation we used lrs [Avis, 2005]. Also we
used 4ti2 [4ti2 team, 2006] to compute
defining matrices. To count the number
of integral solutions in each system, we
used LattE [DeLoera et al., 2003].

First we want to see whether a 3×3 ta-
ble under the CDEM has infinitely many
holes or not. After removing redundant
rows (using cddlib) [Fukuda, 2005], a
3 × 3 table with fixed row, column sums
and the diagonal sum has a 6 × 9 design
matrix. Thus the semigroup is generated
by 9 (column) vectors in Z

6:

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1

By calculating the Smith normal form, it
can be checked that the lattice L gen-
erated by the columns coincides with
Z

6. All of these vectors are extreme rays
of the cone (verified via cddlib). The
Hilbert basis of the cone generated by
these 9 vectors consists of these 9 vectors
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and three additional vectors

b10 = (1 1 0 1 1 1)t, (2)

b11 = (1 0 1 1 0 1)t,

b12 = (0 1 1 0 1 1)t.

These vectors are the fundamental holes
of the semigroup. We set a system of
linear equations such that:

b1x1 + b2x2 + · · · + b9x9 = b10

x1 ∈ Z−, xi ∈ Z+, for i = 2, · · · , 9

where N = Z+ := {0, 1, . . .} and Z− :=
{0,−1, . . .}. We solved the system via
lrs. We noticed that this system has no
real solution (infeasible). This means that

b10 6∈ (−Na1) + Q̃(1).

Thus by Theorem 2.1, the number of ele-
ments in H is infinite.
If we write the marginal sums of the
fundamental holes in (2), we see that
these correspond to three 2 × 3 diagonal
subtables of the 3× 3 table. This suggests
that we investigate the case of a 2× 3 ta-
ble. Let y11, y12, y13, y21, y22, y23 denote the
variables corresponding to six cells of a
2 × 3 table. Fix the marginals as follows

c = y11 + y12 + y13 = y21 + y22 + y23 (3)

= y11 + y21 = y12 + y22 = y11 + y22,

0 = y13 + y23.

The unique solution of these equations is
given as

c

2
= y11 = y12 = y21 = y22, 0 = y13 = y23

Therefore if c = 2k + 1 is an odd positive
integer, then the unique solution is not in-
tegral. Moreover, as suggested in Section
6 of Ohsugi and Hibi [2008] the following
element of the lattice L

(

c c 0
0 0 2c

)

−

(

0 0 c
0 0 c

)

has the marginals in (3). It follows that
(3) is a hole for all positive odd integer c.

Remark 3.1. The above argument suggests
that we take a look at 2 × 2 tables with

2k + 1 = y11 + y12 = y21 + y22 =

y11 + y21 = y12 + y22 = y11 + y22

which has the unique solution k + 1/2 =
y11 = y12 = y21 = y22. However, this is not a
hole. In the 2×2 case the design matrix (after
removing a redundant row) can be written as

1 1 0 0
0 0 1 1
1 0 1 0
1 0 0 1

By calculating the Smith normal form, we
find 2 is an elementary divisor of this matrix
and the columns do not generate Z

4. In fact
the semigroup generated by the columns is
normal. This follows from the fact that the
columns are linearly independent and b =
Ax has a unique solution for a 2 × 2 case.

Now based on the fact that 2× 3 tables
have infinitely many holes, we can prove
the following theorem.

Theorem 3.2. Let R,C ∈ Z be positive
integers such that min{R,C} ≥ 2 and
max{R,C} ≥ 3. The semigroup generated
by columns of the design matrix of a R × C
table with fixed row, column sums and the
diagonal sum has infinitely many holes.

Proof: Suppose we consider a 2 × 3
table x with fixed row sums, column
sums, and the diagonal sum and let A
be a design matrix for the table. Then we
have a system of equations

Ax = b, x ≥ 0, x ∈ Z
6. (4)

Let H23 be the set of holes for the semi-
group generated by columns of A. We
saw that H23 is infinite. Suppose b ∈ H23,
i.e., there exists a real solution but there
does not exist an integer solution for the



system (4). Let y be such a table with the
right-hand-side b such that

y11 y12 y13

y21 y22 y13

Now we consider a R × C table z where
min{R,C} ≥ 2 and max{R,C} ≥ 3 such
that

zij =

{

yij if 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3,

0 else.

If we take the system of equations A′x′ =
b
′, x′ ≥ 0, where A′ is the design ma-
trix for a R × C table with fixed row
sums, column sums, and the diagonal
sum, then all solutions of this system x′

have x′
ij = 0 for i = 3, · · ·R, j = 4, · · · , C.

Since b ∈ H23, there does not exist an
integer solution (4). Thus, b′ is a hole of
the semigroup generated by columns of
A′. Since there are infinitely many b, there
are infinitely many holes for a R×C table
with fixed row sums, column sums, and
the diagonal sum. Since the semigroup
for a 2×3 table has infinitely many holes,
we are done.
Finally, we would like to investigate
which faces of the polyhedral cone de-
fined by the design matrix for a 3 × 3
table are almost saturated or nowhere sat-
urated by Theorem 2.3. The results of our
experiments are in Table 1. To enumerate
all faces, we used allfaces_gmp from
cddlib.
From Table 1 we see that 18 almost sat-
urated 2 dimensional faces are minimal
and 3 nowhere saturated 4 dimensional
faces are the maximal nowhere saturated
faces. Here “minimal” and “maximal” re-
fer to the partial order of the face poset
in terms of inclusion of faces.

4 CONCLUSION

In this paper we found a family of
semigroups with infinitely many holes,

Dimension # of faces # of nowhere # of almost
6 1 0 1
5 16 0 16
4 54 3 51
3 67 13 54
2 36 18 18
1 9 9 0

TABLE 1
Faces for 3 × 3 tables with fixed row,

column sums and the diagonal sum. The
first column represents the dimension of
faces, the second column represents the

number of faces, the third column
represents the number of nowhere

saturated faces, and the fourth column
represents the number of almost

saturated faces.

namely two-way tables under the com-
mon diagonal effect model. Most theoret-
ical studies on semigroups have been as-
suming normality. However, in practice,
there are many cases where a semigroup
is not normal. Therefore, we think that we
need more research on semigroups with
holes.
Also, it is known that non-normality of
the semigroups causes difficulty for se-
quential importance sampling (SIS) [Chen
et al., 2006]. A Markov basis has already
been obtained for this model [Hara et al.,
2008]. However, it is of interest to con-
sider how to perform SIS for contingency
tables under the CDEM.
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