Neighbor-Joining with Interval Methods

D. Levy ${ }^{1}$, Raazesh Sainudiin ${ }^{2}$, R. Yoshida ${ }^{3}$, and L. Pachter ${ }^{1}$
${ }^{1}$ University of California at Berkeley, Berkeley, CA 94720, USA; ${ }^{2}$ Cornell University, Ithaca NY 14850; ${ }^{3}$ Duke University, Durham, NC 27708, USA

Introduction

- The Neighbor-Joining algorithm is a recursive procedure to reconstruct a phylogenetic tree using a transformation of pairwise distances between leaves for identifying cherries in the tree.
- Pachter and Speyer showed that we can recover an n-leaf tree from the weights of m-leaf subtrees if $n \geq 2 m-1$ [PS04].
- We generalized the cherry picking criterion with estimates of the weights of m-leaf subtrees.
- We showed that a reconstructed tree from such weights is more accurate than one using pairwise distances.
- This leads to an improved neighbor-joining algorithm whose total running time is still polynomial in the number of taxa.

```
Neighbor Joining with Pairwise Distances
```


Theorem. (the cherry picking criterion) [SN87, SK88]

Suppose $D(i j)$ is a pairwise distance between taxa i and j. Then, $\{i, j\}$ is a cherry if $A_{i j}=D(i j)-\left(r_{i}+r_{j}\right) /(n-2)$, where $r_{i}:=\sum_{k=1}^{n} D(i k)$, is minimal.

Idea. Initialize a star-like tree and find a cherry. Then we compute branch length from the interior node to each leaf. Repeat this process recursively until we find all cherries.

Figure 1: The traditional Neighbor Joining with pairwise distances.

Neighbor Joining with Subtree Weights

Notation. Let $[n]$ denote the set $\{1,2, \ldots, n\}$ and $\binom{[n]}{m}$ denote the set of all m-element subsets of $[n]$.
Definition. A m-dissimilarity map is a function $D:\binom{[n]}{m} \rightarrow \mathbb{R} \geq 0$. In terms of
phylogeny, this corresponds to the weights of m-subtree weights of a tree T. phylogeny, this corresponds to the weights of m-subtree weights of a tree T.
Theorem. Let D_{m} be be an m-dissimilarity map on n leaves, $D_{m}:\binom{[n]}{m} \rightarrow \mathbb{R} \geq 0$ correspond to the weights of m-subtree weights of a tree T and we define

$$
\begin{aligned}
& S(i j):=\sum_{X \in\left(\frac{(i n)|i, j\rangle}{m-2}\right)} D_{m}(i j X) . \\
& \text { Then } S(i j) \text { is a tree metric. }
\end{aligned}
$$

Furthermore, if T^{\prime} is the additive tree corresponding to this tree metric then T^{\prime} and T have the same tree topology and there is an invertible linear map between their edge weights.

Algorithm. (Neighbor Joining with Subtree Weights)

- Input: n many DNA sequences
- Output: A phylogenetic tree T with n leaves

1. Compute all m-subtree weights via the maximum likelihood.
2. Compute $S(i j)$ for each pair of leaves i and j.
3. Apply Neighbor Joining method with a tree metric $S(i j)$ and obtain additive tree T^{\prime}.
4. Using a linear mapping, obtain a weight of each internal edge and each leaf edge of T.

Cherry Picking Theorem

Theorem. Let T be a tree with n leaves and no nodes of degree 2 and let m be an integer satisfying $2 \leq m \leq n-2$. Let $D:\binom{[n]}{m} \rightarrow \mathbb{R} \geq 0$ be the m-dissimilarity map corresponding to the weights of the subtrees of size m in T. If $Q_{D}(a b)$ is a minimal element of the matrix

$$
\text { then }\{a, b\} \text { is a cherry in the tree } T
$$

Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry Picking Theorem.

Time Complexity

If $m \geq 3$, the time complexity of this algorithm is $O\left(n^{m}\right)$, where n is the number of leaves of T and if $m=2$, then the time complexity of this algorithm is $O\left(n^{3}\right)$. Note: The running time complexity of the algorithm is $O\left(n^{3}\right)$ for both $m=2$ and

Interval Methods

- In [LYP04], Dissimilarity maps are computed via fastDNAml which implements a gradient flow algorithm with floating-point arithmetic.
- Instead, apply the rigorously enclosed maximum likelihood estimations [Sai04].
- Dissimilarity maps computed via the rigorously enclosed MLEs are guaranteed to be enclosed. Thus, reconstructed trees via the generalized NJ method with these dissimilarity maps are more accurate

Computational Results

- Problem: Find the NJ tree for 21 S-locus receptor kinase (SRK) sequences $\left[S^{\prime} W Y^{+} 05\right]$ involved in the self/nonself discriminating self-incompatibility system of the mustard family [Nas02]
- Result: Symmetric difference $(\boldsymbol{\Delta})$ between 10,000 trees sampled from the likeli hood function via MCMC and the trees reconstructed by 5 methods.
DNAml was used in two ways: $\operatorname{DNAml}(\mathrm{A})$ is a basic search with no global rearrangements, whereas DNAml(B) applies a broader search with global rearrangements and 100 jumbled inputs.

$\boldsymbol{\Delta}$	NRGNJ fastDNAml	DNAml(A)	DNAml(B)	TrExML	
0	0	0	2	3608	0
2	0	0	1	471	0
4	171	6	3619	5614	0
6	5687	5	463	294	5
8	4134	3987	5636	13	71
10	8	5720	269	0	3634
12	0	272	10	0	652
14	0	10	0	0	5631
16	0	0	0	0	7

References

[LYP04] D Levy, R Yoshida, and L Pachter. Neighbor joining with subtree weights. preprint, 2004. Nas02] JB Nasrallah. Recognition and rejection of self in plant reproduction. Science, 296:305-308, 2002.
[PS04] L. Pachter and D. Speyer. Reconstructing trees from subtree weights. Applied Mathematics Letters, 17:615-621, 2004.
[Sai04] R Sainudiin. Enclosing the maximum likelihood of the simplest DNA model evolving on fixed topologies: towards a rigorous framework for phylogenetic inference. Technical Repor BU1653-M, Department of Biol. Stats. and Comp. Bio., Cornell University, 2004.
[SK88] J. A. Studier and K. J. Keppler. A note on the neighbor-joining method of saito and nei.
Mol. Biol. Evol., 5:729 - 731, 1988.
[SN87] N. Saitou and M. Nei. The neighbor joining method: a new method for reconstructing phylogenetic trees. 1987.
[SWY ${ }^{+} 05$] R Sainudiin, SW Wong, K Yogeeswaran, J Nasrallah, Z Yang, and R Nielsen. Detecting site pecific physicochemical selective pressures: applications to the class-I HLA of the huma ystem. Journal of Molecular Evolution in pess, 2005:

