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Introduction

•The Neighbor-Joining algorithm is a recursive procedure to reconstruct a phyloge-
netic tree using a transformation of pairwise distances between leaves for identifying
cherries in the tree.

•Pachter and Speyer showed that we can recover an n-leaf tree from the weights of
m-leaf subtrees if n ≥ 2m − 1 [PS04].

•We generalized the cherry picking criterion with estimates of the weights of m-leaf
subtrees.

•We showed that a reconstructed tree from such weights is more accurate than one
using pairwise distances.

•This leads to an improved neighbor-joining algorithm whose total running time is
still polynomial in the number of taxa.

Neighbor Joining with Pairwise Distances

Theorem. (the cherry picking criterion) [SN87, SK88]
Suppose D(ij) is a pairwise distance between taxa i and j. Then, {i, j} is a cherry

if Aij = D(ij) − (ri + rj)/(n − 2), where ri :=
∑n

k=1 D(ik), is minimal.

Idea. Initialize a star-like tree and find a cherry. Then we compute branch length
from the interior node to each leaf. Repeat this process recursively until we find all

cherries.
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Figure 1: The traditional Neighbor Joining with pairwise distances.

Neighbor Joining with Subtree Weights

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of all

m-element subsets of [n].

Definition. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0. In terms of
phylogeny, this corresponds to the weights of m-subtree weights of a tree T .

Theorem. Let Dm be be an m-dissimilarity map on n leaves, Dm :
(

[n]
m

)

→ R≥0

correspond to the weights of m-subtree weights of a tree T and we define

S(ij) :=
∑

X∈([n]\{i, j}
m−2 )

Dm(ijX).

Then S(ij) is a tree metric.
Furthermore, if T ′ is the additive tree corresponding to this tree metric then T ′ and
T have the same tree topology and there is an invertible linear map between their

edge weights.
Algorithm. (Neighbor Joining with Subtree Weights)

• Input: n many DNA sequences.

•Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the maximum likelihood.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain additive tree
T ′.

4. Using a linear mapping, obtain a weight of each internal edge and each leaf edge
of T .

Cherry Picking Theorem

Theorem. Let T be a tree with n leaves and no nodes of degree 2 and let m be an
integer satisfying 2 ≤ m ≤ n − 2. Let D :

(

[n]
m

)

→ R≥0 be the m-dissimilarity map

corresponding to the weights of the subtrees of size m in T . If QD(ab) is a minimal
element of the matrix

QD(ab) =
(

n − 2

m − 1

)

∑

X∈([n]\{i, j}
m−2 )

D(ijX) −
∑

X∈([n]\{i}
m−1 )

D(iX) −
∑

X∈([n]\{j}
m−1 )

D(jX)

then {a, b} is a cherry in the tree T .
Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry

Picking Theorem.

Time Complexity

If m ≥ 3, the time complexity of this algorithm is O(nm), where n is the number of
leaves of T and if m = 2, then the time complexity of this algorithm is O(n3).

Note: The running time complexity of the algorithm is O(n3) for both m = 2 and
m = 3.

Interval Methods

• In [LYP04], Dissimilarity maps are computed via fastDNAml which implements a
gradient flow algorithm with floating-point arithmetic.

• Instead, apply the rigorously enclosed maximum likelihood estimations [Sai04].

•Dissimilarity maps computed via the rigorously enclosed MLEs are guaranteed to
be enclosed. Thus, reconstructed trees via the generalized NJ method with these
dissimilarity maps are more accurate.

Computational Results

•Problem: Find the NJ tree for 21 S-locus receptor kinase (SRK) sequences
[SWY+05] involved in the self/nonself discriminating self-incompatibility system of
the mustard family [Nas02].

•Result: Symmetric difference (∆) between 10, 000 trees sampled from the likeli-
hood function via MCMC and the trees reconstructed by 5 methods.

DNAml was used in two ways: DNAml(A) is a basic search with no global rearrange-
ments, whereas DNAml(B) applies a broader search with global rearrangements and
100 jumbled inputs.

∆ NRGNJ fastDNAml DNAml(A) DNAml(B) TrExML

0 0 0 2 3608 0
2 0 0 1 471 0
4 171 6 3619 5614 0
6 5687 5 463 294 5
8 4134 3987 5636 13 71

10 8 5720 269 0 3634
12 0 272 10 0 652
14 0 10 0 0 5631
16 0 0 0 0 7
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