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Abstract

We present algebraic methods for studying connectivity of Markov moves

with margin positivity. The purpose is to develop Markov sampling methods

for exact conditional inference in statistical models where a Markov basis is

hard to compute. In some cases positive margins are shown to allow a set of

Markov connecting moves that are much simpler than the full Markov basis.

0.1 Introduction

Advances in algebra have impacted in a fundamental way the study of ex-

ponential families of probability distributions. In the 1990s, computational

methods of commutative algebra were brought into statistics to solve both

classical and new problems in the framework of exponential family models.

In some cases, the computations are of an algebraic nature or could be made

algebraic with some work, as in the cumulant methods of Pistone and Wynn

(1999). In other cases, the computations are ultimately Monte Carlo aver-

ages, and the algebra plays a secondary role in designing algorithms. This is

the nature of the work of Diaconis and Sturmfels (1998). Commutative alge-

bra is also used in statistics for experimental design (Pistone, Riccomagno,

and Wynn, 2001) where exponential families are not the focus.

Diaconis and Sturmfels (1998) showed how computing a generating set

for a toric ideal is fundamental to irreducibility of a Markov chain on a set

of constrained tables. This theory gives a method for obtaining Markov

chain moves, such as the genotype sampling method of Guo and Thompson

(1992), extensions to graphical models (Geiger, Meek, and Sturmfels, 2006)

and beyond (Hosten and Sullivant, 2004).

It has been argued that irreducibility is not essential (Besag and Clifford,

1989), but that view is not conventional. Sparse tables in high dimensions

can be very difficult to study.

Algorithms and software have been developed for toric calculations that

are much faster than early methods. The monograph of Sturmfels (1996)

and Kreuzer and Robbiano (2000) are good introductions to toric ideals and

some algorithms for computation. In addition, the software 4ti2 (4ti2 Team,

2006) is essential to research on statistics and algebra. It is easy to use and

very fast (Hemmecke and Malkin, 2005).

Despite these significant computational advances, there are applied prob-

lems where one may never be able to compute a Markov basis. Recall that

a Markov basis is a collection of vector increments that preserve the table

constraints, and connect all tables with the same constraints (see Section
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0.2). Models of no-3-way interaction and constraint matrices of Lawrence

type seem to be arbitrarily difficult, in that the degree and support of el-

ements of a minimal Markov basis can be arbitrarily large (De Loera and

Onn, 2005). Thus, it is useful to compute a smaller number of moves which

connect tables with given constraints rather than all constraints. The pur-

pose of this paper is to develop algebraic tools for understanding sets of

Markov moves that connect tables with positive margins, because sets of

Markov moves that work with certain margins may be much simpler than a

full Markov basis. Such connecting sets were formalized in Chen, Dinwoodie,

and Sullivant (2006) with the terminology Markov subbasis.

Connectivity of a set of Markov moves is traditionally studied through

primary decomposition (Diaconis, Eisenbud, and Sturmfels, 1998). As a

practical tool, this is problematic because the primary decomposition is very

difficult to compute, and also it can be hard to interpret in a useful way. In

our experience, the computation is very slow or impossible with 20 or more

cells in the table (giving 20 or more indeterminates). Theoretical results

on primary decomposition of lattice ideals are relevant (for example Hosten

and Shapiro, 2000) but are generally not sufficient to determine connecting

properties of sets of Markov moves. Therefore we believe that developing

algebraic tools based on quotient operations and radical ideals may be more

practical in large problems.

A motivating example is the following, which is treated on a small scale in

Example 5.2. In logistic regression at 10 levels of an integer covariate, one

has a table of counts that gives the number of “yes” responses and the num-

ber of “no” responses at each covariate level i = 1, 2, . . . , 10. The sufficient

statistics for logistic regression are 1) the total number of “yes” responses

over all levels, 2) the quantity which is the sum over i of the “yes” count at

level i multiplied by the covariate level i, and 3) the total counts of “yes” and

”no” responses at each level i. Conditional inference requires that one works

with all tables that fix these 12 values, and which have nonnegative entries.

A Markov chain with 2465 moves from “primitive partition identities” (p.

47 of Sturmfels (1996)) is irreducible in this collection of constrained tables,

no matter what the 12 constraint values are. However, when each of the 10

sums over “yes” and ”no” counts at the 10 levels of i is positive, a Markov

chain with only 36 moves is irreducible (Chen et al., 2005). Therefore the

property of positive margins can greatly simplify computations.
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0.2 Arbitrary Margins and Toric Ideals

A contingency table records counts of events at combinations of factors,

and it is used to study the relationship between the factors. All possible

combinations of factor labels or “levels” make “cells” in an array, and the

count in each cell may be viewed as the outcome of a multinomial probability

distribution.

In this section a contingency table is written as a vector of length c, and

this representation comes from numbering the cells in a multiway table. Let

A be an r × c matrix of nonnegative integers with columns a1, . . . ,ac in

Zr
+. The matrix A is the design matrix or constraint matrix, and the r

rows are the vectors for computing sufficient statistics. The total number of

constraints when sufficient statistics are fixed is r, which is also the number

of parameters in a loglinear representation of the cell probabilities pi:

pi =
eθ′ai

zθ

where zθ is the normalizing constant, and θ is a column vector of parameters

in R
r. Then the points (p1, . . . , pc) are in the toric variety defined by the

matrix A, while also being nonnegative and summing to 1.

For example, for 2×3 tables under the independence model, A is the 5×6

matrix given by

A =













1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1













and the rows of A compute row and column sums of the contingency table.

Assume that a strictly positive vector is in the row space of A. The toric

ideal IA in the ring Q[x] = Q[x1, x2, . . . , xc] is defined by

IA = 〈xa − xb : Aa = Ab〉

where xa = xa1

1 xa2

2 · · ·xac
c is the usual monomial notation. Define the

fiber Ωt := {n ∈ Zc
+ : An = t} (nonnegative integer lattice points) for

t = (t1, . . . , tr) ∈ Zr
+. That is, the fiber is the set of all contingency ta-

bles satisfying the given constraints. It is known that a generating set of

binomials {xa
+

i − xa
−

i } for IA provide increments {±(a+
i − a−

i )} that make

an irreducible Markov chain in Ωt, whatever the value of t (Diaconis and

Sturmfels, 1998). Here a+
i = max{ai, 0} and a−

i = max{−ai, 0}. Such a
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generating set is called a Markov basis. The Markov chain is run by ran-

domly choosing one of the increments a+
i − a−

i and randomly choosing a

sign, then adding the increment to the current state if the result is non-

negative. Irreducible means that for any two nonnegative integer vectors

m,n that satisfy Am = An = t, there is a sequence of signed vectors

σj(a
+
ij
− a−

ij
), j = 1, 2, . . . , J (σj = ±1), that connects m and n. That is,

n = m+
∑J

j=1
σj(a

+
ij
−a−

ij
) and furthermore every intermediate point in the

path remains in the domain:

m +
I

∑

j=1

σj(a
+
ij
− a−

ij
) ∈ Ωt, 1 ≤ I ≤ J.

In particular, intermediate points on the path are nonnegative.

When one allows entries in the table to go negative, connecting Markov

chains are easier to find. The following proposition uses some standard

terminology. Let M := {±ai ∈ Zc : i = 1, . . . , g} ⊂ ker(A) be signed

Markov moves (that is, integer vectors in ker(A) that are added or subtracted

randomly from the current state), not necessarily a Markov basis. Let IM :=

〈xa
+

i −xa
−

i , i = 1, . . . , g〉 be the corresponding ideal, which satisfies IM ⊂ IA.

The radical of an ideal I is
√

I = {f ∈ Q[x] : f i ∈ I for some i ∈ Z+}. If

I =
√

I, then we say that I is a radical ideal (p. 35 of Cox, Little, and

O’Shea (1997)).

A set of integer vectors M ⊂ Zc is called a lattice basis for A if every

integer vector in ker(A) can be written as an integral linear combination of

the vectors (or moves) in M . Computing a lattice basis is very simple and

does not require symbolic computation.

Proposition 0.2.1 Suppose IM is a radical ideal, and suppose the moves in

M form a lattice basis. Then the Markov chain using the moves in M that

allows entries to drop down to −1 connects a set that includes the set Ωt.

Proof Let m,n be two elements in Ωt. By allowing entries to drop down

to −1 in the Markov chain, it is enough to show that m + 1 and n + 1 are

connected with a nonnegative path using moves in M . By Theorem 8.14 of

Sturmfels (2002), m+1 and n+1 are connected in this way if xm+1−xn+1

are in the ideal IM ⊂ Q[x]. Let p = x1 · x2 · . . . · xc. Since the moves are a

lattice basis, it follows that IM : pn = IA for some integer n > 0 (Lemma

12.2 of Sturmfels (1996)). Thus pn(xm − xn) ∈ IM by the definition of the

quotient ideal. Hence pn(xm −xn)n ∈ IM , and since IM is radical it follows

that xm+1 − xn+1 = p (xm − xn) ∈ IM .
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The idea of allowing some entries to drop down to −1 appears in Bunea

and Besag (2000) and Chen et al. (2005). In high dimensional tables (c

large), the enlarged state space that allows entries to drop down to −1 may

be much larger than the set of interest Ωt, even though each dimension is

only slightly extended. Nevertheless, Proposition 0.2.1 makes it possible to

use the following approach on large tables: compute a lattice basis, compute

the radical of the ideal of binomials from the lattice basis, run the Markov

chain in the larger state space, and do computations on Ωt by conditioning.

To be precise, suppose Ωt ⊂ Ω0 where the set Ω0 is the connected component

of the Markov chain that is allowed to drop down to −1 as above. Suppose

the desired sampling distribution µ on Ωt is uniform. If one runs a symmetric

Markov chain X1, X2, X3, . . . , Xn in Ω0, then a Monte Carlo estimate of µ(A)

for any subset A ⊂ Ωt is

µ(A) =

∑n
i=1

IA(Xi)
∑n

i=1
IΩt

(Xi)

where IA is the indicator function of the set A.

0.3 Survey of Computational Methods

A loglinear model for a multiway table of counts can be fit and evalu-

ated many ways. Maximum likelihood fitting and asymptotic measures of

goodness-of-fit are available from Poisson regression on a data frame, part of

any generalized linear model package such as the one in R (R Development

Core Team, 2004). The R command loglin also does table fitting, using

iterative proportional fitting, and this is more convenient than Poisson re-

gression when the data is in a multidimensional array. Both methods rely on

χ2 asymptotics on either the Pearson χ2 statistic or likelihood ratio statis-

tic for goodness-of-fit. For sparse tables, one often wants exact conditional

methods to avoid asymptotic doubts. The basic command chisq.test in

R has an option for the exact method on two-way tables, usually called

Fisher’s exact test.

For higher-way tables, the package exactLoglinTest is maintained by

Brian Caffo (Caffo, 2006). This implements an importance sampling method

of Booth and Butler (1999). There are certain examples where it has diffi-

culty generating valid tables, but user expertise can help.

Markov chains can be run with a set of Markov moves that come from

generators of a toric ideal. Computing these generators can be done in

many algebra software packages, including COCOA (CoCoATeam, 2007),

Macaulay 2 (Grayson and Stillman, 2006), and Singular (Greuel, Pfister,
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and Schoenemann, 2006) which implement several algorithms. Finally, 4ti2

(4ti2 Team, 2006) was used for computing Markov bases in this paper. It

is very fast, it has a natural coding language for statistical problems, and it

has utilities for filtering output.

A Monte Carlo method that is extremely flexible and does not require

algebraic computations in advance is sequential importance sampling (Chen,

Dinwoodie, and Sullivant, 2006). This method uses linear programming to

generate tables that in practice satisfy constraints with very high probability.

Efficient implementation requires a good proposal distribution.

0.4 Margin Positivity

The Markov basis described in Section 0.2 is a very powerful construction

– it can be used to construct an irreducible Markov chain for any margin

values t. It is possible that a smaller set of moves may connect tables when t

is strictly positive. The notion of Markov subbasis was introduced in Chen,

Dinwoodie, and Sullivant (2006) to study connecting sets of moves in Ωt for

certain values of t.

Now a lattice basis for ker(A) has the property that any two tables can

be connected by its vector increments if one is allowed to swing negative

in the connecting path (see p. 47 of Schrijver (1986) and Chapter 12 of

Sturmfels (1996) for definitions and properties of a lattice basis). One may

expect that if the margin values t are sufficiently large positive numbers,

then the paths can be drawn out of negative territory and one may get

nonnegative connecting paths and so remain in Ωt. However in general

large positive margin values do not make every lattice basis a connecting

set, as illustrated below.

Example 4.1 The following example is from p. 112 of Sturmfels (2002).

With moves of adjacent minors (meaning the nine adjacent
+ −
− +

sign pat-

tern vector increments in the matrix), it is clear that one cannot connect

the following tables, no matter how large the margins 3n may be:

n n 0 n

0 0 0 n

n 0 0 n

n 0 n n

,

n n 0 n

n 0 0 n

0 0 0 n

n n 0 n

.

Adjacent minors have been studied in depth, see for example Hosten and

Sullivant (2002).
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Proposition 0.4.1 Let A be a 0-1 matrix. Suppose there is an integer lower

bound b > 0 on all the constraint values:

tm ≥ b, m = 1, 2, . . . , r.

Let Im = 〈xk〉Am,k>0 be the monomial ideal generated by all the indeter-

minates for the cells that contribute to margin m. If

IA ∩
r
⋂

m=1

Ib
m ⊂ IM

where Ib
m = 〈xi1xi2 · · ·xib〉Am,ik

>0, then the moves in M connect all tables

in Ωt.

Proof Let m and n be two tables in Ωt. It is sufficient to show that xm−xn ∈
IM , by Theorem 8.14 of Sturmfels (2002). Now clearly xm −xn ∈ IA. Since

all the constraint values tm are positive and A has 0-1 entries, it follows that

each monomial xm and xn belongs to Ib
m = 〈xi1xi2 · · ·xib〉Am,ik

>0. Thus the

binomial xm − xn ∈ IA ∩⋂r
m=1

Ib
m.

Thus it is sufficient to show that

IA ∩
⋂

m

Ib
m ⊂ IM

which is the condition of the proposition.

This result can establish connectivity in examples where the primary de-

composition is hard to compute. It does not require IM to be radical.

Let p = x1x2 · · ·xc and let IM : p∞ be the saturation of IM by p, namely,

IM : p∞ := {g ∈ Q[x] : pk · g ∈ IM for some k ≥ 0}.

Then IA = IM : p∞ when the moves in M form a lattice basis (Lemma 12.2

of Sturmfels (1996)). One can show easily that

IA ∩
r
⋂

m=1

Im ⊂ (IM ∩
r
⋂

m=1

Im) : p∞

but the right hand side seems hard to compute directly, so this way of com-

puting moves for tables with positive margins does not seem efficient. The

ideal
⋂

m Im is a monomial ideal for the Stanley-Reisner complex given by

subsets of sets of cell indices not in the margins. For example, for 2×3 tables

with fixed row and column sums as in Example 5.1, and cells labeled left to

right, the ideals are 〈x1, x2, x3〉∩〈x4, x5, x6〉∩〈x1, x4〉∩〈x2, x5〉∩〈x3, x6〉 and
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the simplicial complex is all subsets of the sets {{4, 5, 6}, {1, 2, 3}, {2, 3, 5, 6},
{1, 3, 4, 6}, {1, 2, 4, 5}}.

Example 4.2. Consider the collection of 3 × 3 tables with fixed row and

column sums. If the margin values are all positive, then the collection of

four moves of adjacent minors is not necessarily a connecting set – consider

the two tables below:

1 0 0

0 0 1

0 1 0

,

0 1 0

0 0 1

1 0 0

.

However, if all the six margin values are at least b = 2, then one can apply

Proposition 0.4.1 to the moves in M of adjacent minors, which do not form

a radical ideal. The toric ideal IA can be computed and the containment

required can be shown with IM : (IA ∩⋂6

m=1
I2
m) = 〈1〉.

Theorem 0.4.1 Suppose IM is a radical ideal, and suppose M is a lattice

basis. Let p = x1 · x2 · . . . · xc. For each row index m with tm > 0, let

Im = 〈xk〉Am,k>0 be the monomial ideal generated by indeterminates for

cells that contribute to margin m. Let M be the collection of indices m with

tm > 0. Define

IM = IM :
∏

m∈M

Im.

If

IM : (IM : p) = 〈1〉

then the moves in M connect all tables in Ωt.

Proof Let m and n be two tables in Ωt with margins M positive. It is

sufficient to show that xm−xn ∈ IM , by Theorem 8.14 of Sturmfels (2002).

Now clearly xm − xn ∈ IA, and since the margins M are positive it follows

that xm − xn ∈ ∩m∈MIm. Thus it is sufficient to show that

IA ∩
⋂

m∈M

Im ⊂ IM .

Since IM is radical, this will follow if

IA ·
∏

m∈M

Im ⊂ IM ,

which holds if IM : (
∏

m∈M
Im · IA) = (IM :

∏

m∈M
Im) : IA = 〈1〉. This

condition follows if IA ⊂ IM :
∏

m∈M
Im = IM.
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If IM : (IM : p) = 〈1〉, it follows that IM = IM : p. Then furthermore,

IM = IM : p∞.

Since M is a lattice basis, it follows (Lemma 12.2 of Sturmfels (1996))

that IA = IM : p∞ ⊂ IM : p∞ = IM : p. This shows that IA ⊂ IM : p = IM
and the result is proven.

0.5 Additional Examples

In this section we apply the results on further examples, starting with

the simplest for illustration and clarification of notation. We also do an

example of logistic regression where the results are useful, and an example

of no-3-way interaction where it is seen that the results are not useful.

Example 5.1. Consider the simplest example, the 2×3 table with fixed row

and column sums, which are the constraints from fixing sufficient statistics

in an independence model. If the second column sum is positive, then tables

can be connected with adjacent minors. This is well-known based on primary

decomposition. Indeed, the two moves corresponding to increments

+1 −1 0

−1 +1 0
,

0 +1 −1

0 −1 +1

make the radical ideal IM = 〈x11x22−x12x21, x12x23−x13x22〉 in Q[x11, x12, x13,

x21, x22, x23]. Then IM has primary decomposition equal to

IA ∩ 〈x12, x22〉

which shows that the binomial xm − xn for two tables m,n with the same

row and column sums can be connected by the two moves of adjacent minors

if either x12 or x22 is present in xm and either is present in xn – in other

words if the second column sum is positive.

Also, Theorem 0.4.1 applies. The set M has one index for the second

column margin, and IM = IM : 〈x12, x22〉 = IA. Hence IM : (IM :

x11x12x13x21x22x23) = IA : (IA : x11x12x13x21x22x23) = 〈1〉.

Example 5.2. Consider the logistic regression problem with a 2 × 7 table

and constraints of fixed row and column sums (9 constraints) in addition to

fixed regression weighted sum
∑7

i=1
i n1,i. The setup and connection with

exponential families is described on p. 387 of Diaconis and Sturmfels (1998).

Consider the fifteen moves like

0 +1 −1 0 −1 +1 0

0 −1 +1 0 +1 −1 0
.



12

The ideal IM is radical, even though initial terms in a Groebner basis are

not square-free. It is known that such moves connect tables with positive

column sums (Chen et al., 2005). This was not deduced from the primary

decomposition, which we have not yet computed. Theorem 0.4.1 does apply,

and computing the radical ideal in order to verify the conditions of the

theorem is not difficult. We have seven monomial ideals for the column sums

given by Ii = 〈x1,i, x2,i〉 and the quotient ideal IM = IM : (I1 · I2 · · · I7) is

the toric ideal IA with 127 elements in the reduced Groebner basis.

A widely used class of models in applications is the no-3-way interaction

class. For example, if one has four factors A, B, C, D for categorical data,

each with several levels, the no-3-way interaction model is the loglinear

model described with the common notation [A, B], [A, C], [A, D], [B, C],

[B, D], [C, D] (see Christensen (1990) for notation and definitions). That

is, the sufficient statistics are given by sums of counts that fix all pairs of

factors at specified levels. The Markov basis calculations for these models

are typically hard, even for the 4 × 4 × 4 case. Whittaker (1990) presents

an 8-way binary table of this type, for which we have not yet computed

the Markov basis but which can be approached with sequential importance

sampling.

Given the difficulty of these models, it would be interesting and useful if

positive margins lead to simpler Markov bases. The answer seems to be no.

Consider the natural class of moves M = {(ei,j,k + ei′,j′,k − ei′,j,k − ei,j′,k)−
(ei,j,k′ + ei′,j′,k′ − ei′,j,k′ − ei,j′,k′), . . .}. Also, permute the location of i, j,k.

That is, choose two different coordinates from the d coordinates (above it is

the first two), and choose two different levels i, i′ and j, j′ from each. Choose

two different vectors k,k′ for all the remaining coordinates. This collection

is in ker(A). The example below shows that these moves do not connect

tables with positive margins.

Example 5.3. Consider 4-way binary data, and order the 24 cells 0000,

1000, 0100, 1100, . . ., 1111. There are 20 moves M of degree 8 as described

above which preserve sufficient statistics for the no-3-way interaction model.

More precisely, the representation of moves M above (ei,j,k+ei′,j′,k−ei′,j,k−
ei,j′,k)− (ei,j,k′ + ei′,j′,k′ − ei′,j,k′ − ei,j′,k′) gives square-free degree-8 moves,

including for example (e1100 + e0000 − e0100 − e1000)− (e1101 + e0001 − e0101 −
e1001). The representation is redundant,and only 20 of them are needed to

connect the same set of tables. To see this, first compute a Groebner basis

using 4ti2 for the model, which gives 61 moves and 20 square-free moves

of lowest total degree 8, under a graded term order. Each of the degree-8
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moves in M reduces to 0 under long division by the Groebner basis, and

this division process can only use the degree-8 moves of the Groebner basis,

since the dividend has degree 8. Now the degree-8 moves in the Groebner

basis are the 20 degree-8 moves from M . Therefore these 20 moves connect

everything that M connects.

Consider two tables given by

(0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1).

These tables have the same positive margin vectors, but the 20 moves do not

connect the two tables. This can be verified in Singular (2006) by division

– long division of the binomial x3x5x
2
8x10x15 − x4x6x

2
7x9x16 by a Groebner

basis for the ideal of 20 moves does not leave remainder 0.

Example 5.4. Consider 4× 4× 2 tables with constraints [A, C], [B, C], [A,

B] for factors A, B, C, which would arise for example in case-control data

with two factors A and B at four levels each.

The constraint matrix that fixes row and column sums in a 4 × 4 table

gives a toric ideal with a
(

4

2

)

×
(

4

2

)

element Groebner basis. Each of these

moves can be paired with its signed opposite to get 36 moves of 4 × 4 × 2

tables that preserve sufficient statistics:

0 0 0 0

+1 0 −1 0

0 0 0 0

−1 0 +1 0

,

0 0 0 0

−1 0 +1 0

0 0 0 0

+1 0 −1 0

.

These elements make an ideal with a Groebner basis that is square-free in

the initial terms, and hence the ideal is radical (Proposition 5.3 of Sturmfels

(2002)). Then applying Theorem 0.4.1 with sixteen margins of case-control

counts shows that these 36 moves do connect tables with positive case-

control sums. The full Markov basis has 204 moves. This example should

generalize to a useful proposition on extending Markov moves for simple

models to an extra binary variable. The results of Bayer, Popescu, and

Sturmfels (2001) on Lawrence liftings may be useful for a more general

result.

Fallin et al. (2001) present case-control data with four binary factors,

which are nucleotides at four loci related to Alzheimer’s disease. The statis-

tical question is whether the model of independence of nucleotides at these

loci fits the data. One has five factors: L1, L2, L3, L4, for the four loci,

and C for the binary case-control variable. The constraint matrix for exact
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conditional analysis is the Lawrence lifting of the independence model on

L1, L2, L3, L4, which is described in loglinear notation as [L1, C], [L2, C],

[L3, C], [L4, C], [L1, L2, L3, L4]. The next example is an algebraic treat-

ment of the situation with three loci L1, L2, L3. A general result for any

number of binary factors would be interesting. Further examples of case-

control data where such results could be applied are in Chen, Dinwoodie,

and MacGibbon (2007).

Example 5.5. Consider the 4-way binary model [L1, C], [L2, C], [L3, C],

[L1, L2, L3]. There is a natural set of twelve degree 8 moves that comes

from putting the degree 4 moves from the independence model [L1], [L2],

[L3] at level C=1, and matching them with the opposite signs at level C=0.

This construction is very general for case-control data. The resulting ideal

IM is radical. Suppose the case-control sums are positive, or in other words

suppose that the 23 constraints described by [L1, L2, L3] are positive. Then

one can show that these twelve moves connect all tables.

0.6 Conclusions

We have presented algebraic methods for studying connectivity of moves

with margin positivity. The motivation is that two kinds of constraint ma-

trices lead to very difficult Markov basis calculations, and they arise often in

applied categorical data analysis. The first kind are the matrices of Lawrence

type, which come up in case-control data. The second kind are the models of

no-3-way interaction, which come up when three or more factors are present

and one terminates the model interaction terms at 2-way interaction.

The examples that we have studied suggest that further research on con-

necting moves for tables with constraints of Lawrence type and with pos-

itive margins would have theoretical and applied interest. In this setting

it does appear that there can be Markov connecting sets simpler than the

full Markov basis. On the other hand, margin positivity does not seem to

give much simplification of a Markov connecting set in problems of no-3-way

interaction. Finally, radical ideals of Markov moves have valuable connec-

tivity properties, and efficient methods for computing radicals and verifying

radicalness would be useful. When the full toric ideal is too complicated,

working with a radical ideal may be possible.
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