

FIGURE 1: The traditional Neighbor Joining with pairwise distances.

Neighbor Joining with Subtree Weights

D. Levy¹, R. Yoshida², and L. Pachter¹

¹University of California at Berkeley, Berkeley, CA 94720, USA; ²University of California at Davis, One Shields Ave. Davis, CA 95616, USA The software package MJOIN will be available at http://bio.math.berkeley.edu/mjoin/

Neighbor Joining with Subtree Weights

Notation. Let [n] denote the set $\{1, 2, ..., n\}$ and $\binom{[n]}{m}$ denote the set of all m-element subsets of [n]. **Definition.** A *m*-dissimilarity map is a function $D : {\binom{[n]}{m}} \to \mathbb{R}_{\geq 0}$. In terms of phylogeny, this corresponds to the weights of m-subtree weights of a tree T. **Theorem.** Let D_m be be an *m*-dissimilarity map on *n* leaves, $D_m : {\binom{[n]}{m}} \to \mathbb{R}_{\geq 0}$ correspond to the weights of m-subtree weights of a tree T and we define

 $D_m(ijX).$ S(ij) := $X \in \binom{[n] \setminus \{i, j\}}{m-2}$

Then S(ij) is a tree metric. Furthermore, if T' is the additive tree corresponding to this tree metric then T' and T have the same tree topology and there is an invertible linear map between their edge weights.

Algorithm. (Neighbor Joining with Subtree Weights)

• Input: *n* many DNA sequences.

• **Output**: A phylogenetic tree T with n leaves.

- 1. Compute all m-subtree weights via the maximum likelihood.
- 2. Compute S(ij) for each pair of leaves i and j.
- 3. Apply Neighbor Joining method with a tree metric S(ij) and obtain additive tree T'.
- . Using a linear mapping, obtain a weight of each internal edge and each leaf edge of T.

Cherry Picking Theorem

Theorem. Let T be a tree with n leaves and no nodes of degree 2 and let m be an integer satisfying $2 \le m \le n-2$. Let $D: {\binom{[n]}{m}} \to \mathbb{R}_{\ge 0}$ be the *m*-dissimilarity map corresponding to the weights of the subtrees of size m in T. If $Q_D(ab)$ is a minimal element of the matrix

$$Q_D(ab) = \left(\frac{n-2}{m-1}\right) \sum_{X \in \binom{[n] \setminus \{i,j\}}{m-2}} D(ijX) - \sum_{X \in \binom{[n] \setminus \{i\}}{m-1}} D(iX) - \sum_{X \in \binom{[n] \setminus \{j\}}{m-1}} D(jX)$$

then $\{a, b\}$ is a cherry in the tree T. **Note.** The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry Picking Theorem.

Time Complexity

If $m \geq 3$, the time complexity of this algorithm is $O(n^m)$, where n is the number of leaves of T and if m = 2, then the time complexity of this algorithm is $O(n^3)$. **Note**: The running time complexity of the algorithm is $O(n^3)$ for both m = 2 and m = 3.

Computational Results

We generate 500 replications with the Jukes-Cantor model via a software evolver from **PAML** package.

T1

The number represents a percentage which we got the same tree topology. l is the length of sequences.

1	a/b	m=2	m=3	m=4	fastDNAml
500	0.01/0.07	68.2	76.8	80.4	74.8
	0.02/0.19	54.2	61.2	73.6	55.6
	0.03/0.42	10.4	12.6	23.8	12.6
1000	0.01/0.07	94.2	96	97.4	96.6
	0.02/0.19	87.6	88.6	96.2	88
	0.03/0.42	33.4	35	52.4	33.6

The table above represents success rates for the model T_1 . We compared our method with fastDNAml [HO94].

1	a/b	m=2	m=3	m=4	fastDNAml
500	0.01/0.07	84.4	86	85.6	88.4
	0.02/0.19	68.2	72	73.2	88.4
	0.03/0.42	18.2	29.2	36.2	87.4
1000	0.01/0.07	95.6	97.8	97.4	99.4
	0.02/0.19	88.4	89.6	93.4	99.8
	0.03/0.42	40	48.2	57.6	96.6

The table above represents success rates for the model T_2 . We compared our method with fastDNAml [HO94].

- 10:41-48, 1994.
- Letters, 17:615 621, 2004.
- *Biol. Evol.*, 5:729 731, 1988.
- genetic trees. 1987.

References

[HO94] G. J. Olsen H. Matsuda R. Hagstrom and R. Overbeek. fastdnaml: A tool for construction of phylogenetic trees of dna sequences using maximum likelihood. Comput. Appl. Biosci., [PS04] L. Pachter and D. Speyer. Reconstructing trees from subtree weights. Applied Mathematics [SK88] J. A. Studier and K. J. Keppler. A note on the neighbor-joining method of saito and nei. Mol. [SN87] N. Saitou and M. Nei. The neighbor joining method: a new method for reconstructing phylo-