Neighbor Joining with Subtree Weights

D. Levy ${ }^{1}$, R. Yoshida ${ }^{2}$, and L. Pachter ${ }^{1}$

${ }^{1}$ University of California at Berkeley, Berkeley, CA 94720, USA; ${ }^{2}$ University of California at Davis, One Shields Ave. Davis, CA 95616, USA
The software package MJOIN will be available at http://bio.math.berkeley.edu/mjoin/

Introduction

- The Neighbor-Joining algorithm is a recursive procedure to reconstruct a phylogenetic tree using a transformation of pairwise distances between leaves for identifying cherries in the tree.
- Pachter and Speyer showed that we can recover an n-leaf tree from the weights of m-leaf subtrees if $n \geq 2 m-1$ [PS04
- We generalized the cherry picking criterion with estimates of the weights of m-leaf subtrees
- We showed that a reconstructed tree from such weights is more accurate than one using pairwise distances.
- This leads to an improved neighbor-joining algorithm whose total running time is still polynomial in the number of taxa

Neighbor Joining with Pairwise Distances

Theorem. (the cherry picking criterion) [SN87, SK88]
Suppose $D(i j)$ is a pairwise distance between taxa i and j. Then, $\{i, j\}$ is a cherry if $A_{i j}=D(i j)-\left(r_{i}+r_{j}\right) /(n-2)$, where $r_{i}:=\sum_{k=1}^{n} D(i k)$, is minimal.

Idea. Initialize a star-like tree and find a cherry. Then we compute branch length from the interior node to each leaf. Repeat this process recursively until we find all cherries.

Figure 1: The traditional Neighbor Joining with pairwise distances.

Neighbor Joining with Subtree Weights

Notation. Let $[n]$ denote the set $\{1,2, \ldots, n\}$ and $\binom{[n]}{m}$ denote the set of all m-element subsets of $[n]$.
Definition. A m-dissimilarity map is a function $D:\binom{[n]}{m} \rightarrow \mathbb{R}_{\geq 0}$. In terms of
phylogeny, this corresponds to the weights of m-subtree weights of a tree T.
Theorem. Let D_{m} be be an m-dissimilarity map on n leaves, $D_{m}:\binom{(n)}{m} \rightarrow \mathbb{R} \geq 0$ correspond to the weights of m-subtree weights of a tree T and we define

$$
S(i j):=\sum_{X \in\left(\begin{array}{l}
(n) \mid i(i, j) \\
m-2 \\
)
\end{array}\right.} D_{m}(i j X) .
$$

Then $S(i j)$ is a tree metric
Furthermore, if T^{\prime} is the additive tree corresponding to this tree metric then T^{\prime} and T have the same tree topology and there is an invertible linear map between their edge weights.

Algorithm. (Neighbor Joining with Subtree Weights)

- Input: n many DNA sequences
- Output: A phylogenetic tree T with n leaves

1. Compute all m-subtree weights via the maximum likelihood 2. Compute $S(i j)$ for each pair of leaves i and j.
2. Apply Neighbor Joining method with a tree metric $S(i j)$ and obtain additive tree T^{\prime}.
3. Using a linear mapping, obtain a weight of each internal edge and each leaf edge of T.

Cherry Picking Theorem

Theorem. Let T be a tree with n leaves and no nodes of degree 2 and let m be an integer satisfying $2 \leq m \leq n-2$. Let $D:\binom{[n]}{m} \rightarrow \mathbb{R}_{\geq 0}$ be the m-dissimilarity map corresponding to the weights of the subtrees of size m in T. If $Q_{D}(a b)$ is a minimal element of the matrix
then $\{a, b\}$ is a cherry in the tree T
Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry
Picking Theorem.

Time Complexity

If $m \geq 3$, the time complexity of this algorithm is $O\left(n^{m}\right)$, where n is the number of leaves of T and if $m=2$, then the time complexity of this algorithm is $O\left(n^{3}\right)$. Note: The running time complexity of the algorithm is $O\left(n^{3}\right)$ for both $m=2$ and

$$
m=3 .
$$

Computational Results

We generate 500 replications with the Jukes-Cantor model via a software evolver from PAML package

T1

T2

Figure 2: Modeled from Strimmer and von Haeseler

The number represents a percentage which we got the same tree topology. l is the length of sequences.

1	$\mathrm{a} / \mathrm{b} \quad \mathrm{m}=2 \mathrm{~m}=3 \mathrm{~m}=4$ fastDNAml

| 500 | $0.01 / 0.07$ | 68.2 | 76.8 | 80.4 | 74.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $0.02 / 0.19$ | 54.2 | 61.2 | 73.6 | 55.6 |
| :--- | :--- | :--- | :--- | :--- |

$0.03 / 0.42$	10.4	12.6	23.8	12.6

| 1000 | $0.01 / 0.07$ | 94.2 | 96 | 97.4 |
| :--- | :--- | :--- | :--- | :--- | | $0.02 / 0.19$ | 87.6 | 88.6 | 96.2 | 88 |
| :--- | :--- | :--- | :--- | :--- | :--- | | $0.03 / 0.42$ | 33.4 | 35 | 52.4 | 33.6 |
| :--- | :--- | :--- | :--- | :--- |

The table above represents success rates for the model T_{1}. We compared our method with fastDNAm1 [HO94]

l	a / b		$\mathrm{m}=2$		$\mathrm{~m}=3$
$\mathrm{~m}=4$	fastDNAml				
500	$0.01 / 0.07$	84.4	86	85.6	88.4
	$0.02 / 0.19$	68.2	72	73.2	88.4
	$0.03 / 0.42$	18.2	29.2	36.2	87.4
1000	$0.01 / 0.07$	95.6	97.8	97.4	99.4
	$0.02 / 0.19$	88.4	89.6	93.4	99.8
	$0.03 / 0.42$	40	48.2	57.6	96.6

The table above represents success rates for the model T_{2}. We compared our method with fastDNAml [HO94]

References

[H094 G. J. Olsen H. Matsuda R. Hagstrom and R. Overbeek. fastdnaml: A tool for construction of phylogenetic trees of dna sequences using maximum likelihood. Comput. Appl. Biosci. 10:41-48, 1994.
PS04] L. Pachter and D. Spever. Reconstructing trees from subtree weights. Applied Mathematics Letters, 17:615-621, 2004
[SK88] J. A. Studier and K. J. Kepple.
Biol. Evol., 5:729-731, 1988
N. Satou and M.
genetic trees. 1987

