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Serum Cholesterol (mg/100ml)

Blood 1 2 3 4 5 6 7

Pressure < 200 200-209 210-219 220-244 245-259 260-284 > 284

1 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/11

2 117-126 0/66 2/27 1/25 8/69 0/24 5/22 1/19

3 127-136 2/59 0/34 2/21 2/83 0/33 2/26 4/28

4 137-146 1/65 0/19 0/26 6/81 3/23 2/34 4/23

5 147-156 2/37 0/16 0/6 3/29 2/19 4/16 1/16

6 157-166 1/13 0/10 0/11 1/15 0/11 2/13 4/12

7 167-186 3/21 0/5 0/11 2/27 2/5 6/16 3/14

8 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7
Source : [Cornfield, 1962]

Data on coronary heart disease incidence in Framingham, Massachusetts
[Cornfield, 1962, Agresti, 1990]. A sample of male residents, aged
40 through 50, were classified on blood pressure and serum cholesterol
concentration. 2/53 in the (1,1) cell means that there are 53 cases, of
whom 2 exhibited heart disease.
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Imcomplete contingency table

Table 1: Effects of decision alternatives on the verdicts and social
perceptions of simulated jurors.

Condition
Alternative 1 2 3 4 5 6 7
First degree 11 [0] [0] 2 7 [0] 2

Second degree [0] 20 [0] 22 [0] 11 15
Manslaughter [0] [0] 22 [0] 16 13 5
Not guilty 13 4 2 0 1 0 2

Source : [Vidmar, 1972]

This table refers to the possible effects on decision making of limiting the
number of alternatives available to the number of a jury panel.

[0] refers to the structural zero on the cell.
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Contingency tables

A contingency table is a table which records counts of events at
combinations of factors, and it is used to study the relationship/correlations
between the factors.

All possible combinations of factor labels make cells in an array, and the
count in each cell may be viewed as the outcome of a multinomial probability
distribution.

Let X be a contingency table with k cells. In order to simplify the notation,
we denote by X = {1, . . . , k}, the sample space of the contingency table.

In the special case of two-way contingency tables with I rows and J columns,
we also denote the sample space with X = {1, . . . , I} × {1, . . . , J}.
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Example: Independence model
Let X = {Xij} be a I × J table Xij ∈ N, i = 1, . . . , I, j = 1, . . . , J .

An observed table Xobs = {xobs
ij }, xobs

ij ∈ N, and 1 ≤ I, 1 ≤ J .

Xij ∼ Poi(µij) iid

where µij = ln(θij).

Consider the generalized linear model with a canonical linear predictor of
the form:

θij = λ+ λR
i + λC

j + λRC
ij .

for i = 1, . . . , I and j = 1, . . . , J .

Independence model is a special case such that

λRC
ij = 0 for 1 ≤ i ≤ I, 1 ≤ j ≤ J.
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Hypothesis

The sufficient statistics for independence model include the row and column
margins. Hence, the conditional distribution of the table counts given the
margins is the same regardless of the values of the parameters in the model.

We have the following hypothesis test:

H0 : λ
RC
ij = 0 no interaction.

H1 : λ
RC
ij not constant over all cells.

CREST 6



Ruriko Yoshida

Exact p-value computation

Let X̂ be the MLE of the data under the model. Then Pearson’s χ2

statistics is

f(X) =

I
∑

i=1

J
∑

j=1

(X̂ij −Xij)
2

X̂ij

.

An exact permutation test based on the χ2 statistic is constructed as
follows. The p-value of this test is:

p = Ep[I{f(X)≥f(x)}|satisfying margins]

where x is an observed table and p is the hypergeometric distribution.
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In general we approximate the expected value by generating random draws
from the hypergeometric distribution and estimate

p̂ =
1

N

N
∑

i=1

I{f(xi)≥f(x)}

where N is the number of draws x
1, · · · ,xN iid from the hypergoemetric

conditional on the sufficient statistics under H0.

Note: This is the only possible method in situations where counts are very
small or the number of tables satisfying margins is very small.

Question: How can we generate random draws from this distribution?

Answer: Apply Diaconis-Sturmfels algorithm to the MCMC technique.
Diaconis-Sturmfels algorithm is the only method guaranteed to connect the
MC.

CREST 8



Ruriko Yoshida

Exact p-value computation

Note that the row sums and column sums are the sufficient statistics under
H0. For example, we have

Total
x1,1 x1,2 x1,3 6
x2,1 x2,2 x2,3 6

Total 4 4 4

and each cell is bounded by 2, i.e., xi,j ≤ 2 for i = 1, 2 and j = 1, 2, 3.
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From the constraints we can set up the system of linear equations and
inequalities.

e.g. For our 2× 3 table, we have: let Z+ = {0, 1, 2, · · · },

x1,1 +x2,1 = 4
x1,2 +x2,2 = 4

x1,3 +x2,3 = 4
x1,1 +x1,2 +x1,3 = 6

x2,1 +x2,2 +x2,3 = 6
xi,j ∈ Z+

xi,j ≤ 2.

In general, we can set up a system {x ∈ Z
d
+|Ax = b} for any tables.

Note: Thus, moves connect all integral points inside a feasible region
Pb = {x ∈ R

d|Ax = b, x ≥ 0} 6= ∅.
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What is a Markov Basis??

Suppose Pb = {x ∈ R
d|Ax = b, x ≥ 0} 6= ∅ and let M be a finite set such

that M ⊂ {x ∈ Z
d|Ax = 0}.

We define the graph Gb such that:

• Nodes of Gb are the lattice points inside Pb.

• We draw an undirected edge between a node u and a node v iff u−v ∈ M .

Definition : M is called a Markov basis if Gb is a connected graph for all
b with Pb 6= ∅.

Why do we care?: A Markov basis is the only known set of moves which
guarantees to connect all tables with any constraints.
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Example

Consider the independence model,

Total
? ? ? ? ? ? ? ? ? 6
? ? ? ? ? ? ? ? ? 6

Total 4 4 4

Table 2: 2× 3 tables with 1-marginals.

There are 19 tables satisfying these margins. We counted using a software
LattE.
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There are 3 elements in a Markov basis modulo signs.

In fact such moves are called basic moves.
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A table with the marginals plus an element of a Markov basis is also a table
with the given marginals.
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A Markov basis for 2 × 3 tables. An element of the Markov basis is a
undirected edge between integral points in the polytope.

CREST 15



Ruriko Yoshida

Fact: For any 2-way contingency tables with fixed row and column sums,
we know that a set of basic moves forms a Markov basis.

Note: If you add additional constraints, (for example bounded 2-dimensional
tables) then it is not necessarily true anymore.

Note: A Gröbner basis of a toric idea IA associate to a design matrix A
with any term order is a Markov basis associate to a matrix A. So one can
compute a Markov basis from a Gröbner basis of IA with any term order.

Note: There are several nice software to compute Gröbner bases (such as
4ti2).

However: Computing a Gröbner basis is very hard in general.

Question: Can we just compute a connecting set assuming that all
margins are positive?
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Notation

Without loss of generality, we represent a table by a vector of counts
n = (n1, . . . , nk).

The fiber of an observed table nobs with respect to a function T : Nk −→ N
s

is the set
FT (nobs) =

{

n | n ∈ N
k , T (n) = T (nobs)

}

.

When the dependence on the specific observed table is irrelevant, we will
write simply FT instead of FT (nobs).

In mathematical statistics framework, the function T is usually the minimal
sufficient statistic of some statistical model.
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Example: Bounded tables

Definition: A Universal Gröbner basis of an ideal is the Gröbner basis with
respect to every term order.

Let an s × k-matrix AT be a design matrix of T and IAT
be a toric ideal

associate with AT .

Theorem [Rapallo and Rogantin, 2007] A Universal Gröbner basis of the
toric ideal IAT

is a Markov basis of bounded tables under the given model.

Note: If we know a Universal Gröbner basis for AT , then we can compute
a MB for incomplete tables.
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However, the Universal Gröbner basis of the toric ideal IAT
is, in general,

much bigger than a Gröbner basis of the toric ideal IAT
with respect to a

given term order. So in general it is very hard to compute.

Just to give the idea of such increase, we present in the following table the
number of moves of the standard Markov basis for square I × I tables for
the first I’s.

2 3 4 5 6 7
Standard Markov basis 1 9 36 100 225 441
Universal Gröbner basis 1 15 204 3, 940 113, 865 4, 027, 161

Thus, we consider the set of connecting moves.
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Markov subbases

Definition: [Chen et. al., 2007] A Markov subbasis MAT ,nobs for nobs ∈ N
k

and integer matrix AT is a finite subset of ker(AT )∩Z
k such that, for each

pair of vectors u, v ∈ FT , there is a sequence of vectors mi ∈ MAT ,nobs, i =
1, . . . , l, such that

u = v +

l
∑

i=1

mi,

0 ≤ v +

j
∑

i=1

mi, j = 1, . . . , l.

The connectivity through nonnegative lattice points only is required to hold
for this specific nobs.

Note: MAT ,nobs for every nobs ∈ N
k and for a given AT is a Markov basis

M for AT .
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To compute a Markov subbasis, recall some definitions from commutative
algebra:

An ideal I ⊂ R[x] is radical if

{f ∈ R[x] | fn ∈ I for some n} = I ;

Let I, J ⊂ R[x] be ideals. The quotient ideal (I : J ) is defined by:

(I : J ) = {f ∈ R[x] | f · J ⊂ I} ;
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Let I, J ⊂ R[x] be ideals. The saturation of I with respect to J is the
ideal defined by:

(I : J∞) = {f ∈ R[x] | gm · f ∈ I, g ∈ J , for some m > 0} ;

Let Z = {z1, . . . , zs} ⊂ R
k. A lattice L generated by Z is defined:

L = ZZ.

M ⊂ R
k is called a lattice basis of L if each element in L can be written

as a linear integer combination of elements in M .
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Theorem [Chen, Dinwoodie, and Y., 2008] Suppose IM is a radical ideal,
and suppose M is a lattice basis. Let p = x1 · · ·xk. For each index ℓ with
(ATn)ℓ > 0, let Iℓ = 〈xh〉(AT )ℓ,h>0 be the monomial ideal generated by
indeterminates for cells that contribute to margin ℓ. Let L be the collection
of indices ℓ with (ATn)ℓ > 0. Define

IL =

(

IM :
∏

ℓ∈L

Iℓ

)

.

If
(IL : (IL : p)) = 〈1〉 (1)

then the moves in M connect all the tables in FT .
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Markov subbases for tables with positive bounds

We first study Markov subbases MAT ,nobs for any bounded two-way
contingency tables nobs ∈ N

k with positive bounds, i.e., no structural
zeros, under independence model.

Theorem [Rapallo and Y., 2010] Consider I×J tables with row and column
sums fixed and with all cells bounded. If these bounds are positive, then
a Markov subbasis for the tables is the standard Markov basis for I × J
tables with row and column sums fixed without bounds, i.e., the set of basic
moves of all 2× 2 minors.
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Markov subbases for incomplete tables

Now we study Markov subbases MAT ,nobs for any incomplete I × J
contingency tables nobs ∈ N

k with positive margins, i.e., AT (nobs) > 0,
under independence model.

Without loss of generality, we can assume that all margins are positive
because cell counts in rows and/or columns with zero marginals are necessary
zeros and such rows and/or columns can be ignored in the conditional
analysis.

Let X = {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J} and let S be a non-trivial subset of
X .
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Proposition [Aoki and Takemura, 2005] Suppose we have I×J tables with
fixed row and column sums. A set of basic moves is a Markov subbasis
for I × J contingency tables, I, J ≥ 4, with structural zeros in only
diagonal elements, i.e., (i.e., cells with indices in S = {(i, j) : i = j for
i = 1, . . . ,min(I, J)}) under the assumption of positive marginals.
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Logistic regression and positive margins

In most applications of the logistic regression model, for each combination
of covariates, the number of “successes” and the number of “failures” are
observed.

The number of trials (i.e. the sum of numbers of “successes” and “failures”)
for each combination of covariates is usually fixed by a sampling scheme
and positive. We call this marginal the response variable marginal.

Therefore we are usually interested in the connectivity of fibers with positive
response variable marginals for sampling tables via Monte Carlo Markov
chain (MCMC).

CREST 27



Ruriko Yoshida

Univariate Logistic Regression Model
Let {1, . . . , J} be the set levels of a covariate and let X1j and X2j,
j = 1, . . . , J , be the numbers of successes and failures, respectively. The
probability for success pj is modeled as

logit(pj) = log
pj

1− pj
= α+ βj, j = 1, . . . , J.

The sufficient statistics for the model is (X1+, X+1, . . . , X+J ,
∑J

j=1 jX1j).

A move z is a table such that X + z satisfies the given margins.

Moves z = (zij) for the model satisfy (z1+, z+1, . . . , z+J) = 0 and

J
∑

j=1

jz1j = 0.
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Bivariate Logistic Regression Model

Let {1, . . . , J} and {1, . . . ,K} be the sets levels of two covariates. Let
X1jk and X2jk, j = 1, . . . , J , k = 1, . . . ,K, be the numbers of “successes”
and “failures”, respectively, for level (j, k). The probability for “success”
p1jk is modeled as

logit(p1jk) = log

(

p1jk
1− p1jk

)

= µ+ αj + βk,

j = 1, . . . , J, k = 1, . . . ,K.

The sufficient statistics for this model is X1++,
∑J

j=1 jX1j+,
∑K

k=1 kX1+k,
X+jk, ∀j, k.
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Hence moves Z = (zijk) for the model satisfy

z1++ = 0,

J
∑

j=1

jz1j+ = 0,

K
∑

k=1

kz1+k = 0, z+jk = 0, ∀j, k.

Difficulty: the number of elements in a minimal Markov basis for a model
can be exponentially many.

Question: Finding a set of Markov connecting moves, Markov subbases,
that are much simpler than the full Markov basis with positive response
variable marginals.
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Markov subbasis for univariate logistic regression

Let ej denote the contingency table with just 1 frequency in the j-th cell.

B = {±(ej1+ej4−ej2−ej3) | 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J, j2−j1 = j4−j3}

Theorem: [Chen, Dinwoodie, Dobra, Huber, 2005]

The set of moves

B0 = {z ∈ B | j2 = j1 + 1, j3 = j4 − 1}

connects every fiber satisfying (X+1, . . . , X+J) > 0 for the univariate
logistic regression model.
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Markov subbasis for univariate logistic regression
if j2 6= j3

j1 j2 j3 j4
i = 1 −1 1 1 −1
i = 2 1 −1 −1 1

j1 j2 j3 j4
i = 1 1 −1 −1 1
i = 2 −1 1 1 −1

if j2 = j3
j1 j2 j4

i = 1 1 −2 1
i = 2 −1 2 −1

j1 j2 j4
i = 1 −1 2 −1
i = 2 1 −2 1
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Configuration for the bivariate logistic regression model

Consider two configurations A = (a1, . . . ,aJ) and B = (b1, . . . , bK), where
aj and bk are column vectors. We assume the homogeneity, i.e., there exist
weight vectors w, v such that 〈w,aj〉 = 1, ∀j, 〈v, bk〉 = 1, ∀k.

The configuration A⊗B of the Segre product of A and B is defined as

A⊗B =
(

aj ⊕ bk, j = 1, . . . , J, k = 1, . . . ,K
)

, aj ⊕ bk =

(

aj

bk

)

.

Let

A =

(

1 1 . . . 1
1 2 . . . J

)

, B =

(

1 1 . . . 1
1 2 . . . K

)

.

Fact: The configuration for the bivariate logistic regression model is the
Lawrence lifting of Segre product Λ(A⊗B).
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Markov subbasis

Consider a set of moves which connects every fiber satisfying X+jk > 0,
∀j, k.

Let ejk = (eijk) be redefined as an integer array with 1 at the cell (1jk),
−1 at the cell (2jk) and 0 everywhere else. Define BΛ(A⊗B) as the set of
moves z = (zijk) satisfying the following conditions,

1. z = ej1k1 − ej2k2 − ej3k3 + ej4k4;

2. (j1, k1)− (j2, k2) = (j3, k3)− (j4, k4).

Theorem [Hara, Takemura, Y., 2010]

BΛ(A⊗B) connects every fiber satisfying X+jk > 0, ∀j, k.
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Examples of moves (i = 1 layer)
(1) k1 = · · · = k4 (2) k1 = · · · = k4 and j2 = j3

j1 j2 j3 j4
k1 1 −1 −1 1

j1 j2 j4
k1 1 −2 1

(3) k1 = k2 and j2 = j3 (4) (j2, k2) = (j3, k3)

j1 j2 j4
k1 1 −1 0
k3 0 −1 1

j1 j2 j4
k1 1 0 0
k2 0 −2 0
k4 0 0 1

(5) k1 = k2 (k3 = k4) (6) k1 = k4 and j2 = j3

j1 j2 j3 j4
k1 1 −1 0 0
k3 0 0 −1 1

j1 j2 j4
k2 0 −1 0
k1 1 0 1
k3 0 −1 0

CREST 35



Ruriko Yoshida
Serum Cholesterol (mg/100ml)

Blood 1 2 3 4 5 6 7

Pressure < 200 200-209 210-219 220-244 245-259 260-284 > 284

1 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/11

2 117-126 0/66 2/27 1/25 8/69 0/24 5/22 1/19

3 127-136 2/59 0/34 2/21 2/83 0/33 2/26 4/28

4 137-146 1/65 0/19 0/26 6/81 3/23 2/34 4/23

5 147-156 2/37 0/16 0/6 3/29 2/19 4/16 1/16

6 157-166 1/13 0/10 0/11 1/15 0/11 2/13 4/12

7 167-186 3/21 0/5 0/11 2/27 2/5 6/16 3/14

8 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7
Source : [Cornfield, 1962]

Data on coronary heart disease incidence in Framingham, Massachusetts
[Cornfield, 1962, Agresti, 1990]. A sample of male residents, aged
40 through 50, were classified on blood pressure and serum cholesterol
concentration. 2/53 in the (1,1) cell means that there are 53 cases, of
whom 2 exhibited heart disease.
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Data on coronary heart disease incidence

We examine the goodness-of-fit of the model with J = 7 and K = 8 by
likelihood ratio statistic L0.

We test the bivariate logistic regression defined above as a null hypothesis
vs. ANOVA type logit model, namely:

H0 : logit(p1jk) = log

(

p1jk
1− p1jk

)

= µ+ αj + βk,

for j = 1, . . . , J, k = 1, . . . ,K.

H1 : logit(p1jk) = log

(

p1jk
1− p1jk

)

= µ+ αj + βk,

where
∑J

j=1αj = 0 and
∑K

k=1 βk = 0.
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Data on coronary heart disease incidence

The value of L0 is 13.07587 and the asymptotic p-value is 0.2884 from
the asymptotic distribution χ2

11. We computed the exact distribution of L0

via MCMC with BΓ(A⊗B) defined. As an extension of B0 to the bivariate
model, we define B2

0 by the set of moves z = ej1k1 − ej2k2 − ej3k3 + ej4k4
satisfying (j1, k1)− (j2, k2) = (j3, k3)− (j4, k4) is either of (±1, 0), (0,±1),
(±1,±1) or (±1,∓1).

The estimated p-values are 0.2706 with BΓ(A⊗B) and 0.2958 with B2
0.

Therefore bivariate logistic regression model is accepted.
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(a) A histogram with BΛ(A⊗B) (b) A histogram with B2
0

Figure 1: Histograms of L0 via MCMC with BΛ(A⊗B) and B2
0
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Data on occurrence of esophageal cancer

Table 3: Data on occurrence of esophageal cancer
Age

Alcohol 1 2 3 4 5 6
Consumption 25-34 35-44 45-54 55-64 65-74 75+

0 Low 0/106 5/169 21/159 34/173 36/124 8/39
1 High 1/10 4/30 25/54 42/69 19/37 5/5
Source : [Breslow and Day, 1980]

This table refers to the occurrence of esophageal cancer in Frenchmen which
were classified on ages and dummy variable on alcohol consumption.
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Data on occurrence of esophageal cancer

We test the goodness-of-fit of the bivariate logistic regression model with
J = 6 and K = 2 by likelihood ratio statistics L0 via MCMC. Then the
value of L0 is 20.89 and the asymptotic p-value is 0.0003330 from the
asymptotic distribution χ2

4.

We computed the exact distribution of L0 via MCMC with BΓ(A⊗B) and
B2
0. Figure 2 represents the histograms of L0. The estimated p-values

are 0.00011 with BΓ(A⊗B) and 0.00055 with B2
0. Therefore the model is

rejected at the significance level of 1%.
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Data on occurrence of esophageal cancer
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(a) a histogram with BΛ(A⊗B) (b) a histogram with B2
0

Figure 2: Histograms of L0 via MCMC with BΛ(A⊗B) and B2
0

The smooth line is asymptotic chi-square density, which shows a good fit.
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Conjectures

The current proof for bivariate case is already very difficult and the general
multivariate case remains to be a conjecture.

Conjecture: The set of moves BΛ(A1⊗···⊗Am) connects every fiber with
positive response marginals for the logistic regression with m covariates.

Conjecture: The subset of moves from BΛ(A1⊗···⊗Am) such that the
elements of j1− j2 = j3− j4 are ±1 or 0 connects every fiber with positive
response marginals for the logistic regression with m covariates. This is still
conjecture for even m = 2.
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Conjecture

Suppose M is a lattice basis. Let p = x1 · · ·xk. For each index ℓ with
(ATn)ℓ > 0, let Iℓ = 〈xh〉(AT )ℓ,h>0 be the monomial ideal generated by
indeterminates for cells that contribute to margin ℓ. Let L be the collection
of indices ℓ with (ATn)ℓ > 0. Define

IL =

(

IM :
∏

ℓ∈L

Iℓ

)

.

If
(IL : (IL : p)) = 〈1〉 (2)

then the moves in M connect all the tables in FT .
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Advertisement 1

Journal of Algebraic Statistics
The first issue has been just published (June 30th 2010).

http://www.jalgstat.com/
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Advertisement 2

SIAM Annual Meeting on July 12th to 15th, Pittsburg

Minisymposium on Algebraic Statistics

http://cophylogeny.net/SIAM_AN10.php

Special Issue on Minisymposium on Algebraic Statistics in J of
Algebraic Statistics

http://www.jalgstat.com/
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Thank you....
The summary paper is in the first issue of J of Algebraic Statistics.
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