
A Computational Study of Integer

Programming Algorithms based on Barvinok’s

Rational Functions

J. A. De Loera a, D. Haws a, R. Hemmecke a, P. Huggins a,
R. Yoshida a

aUniversity of California at Davis, One Shields Ave. Davis, CA 95616, USA

http://www.math.ucdavis.edu/∼latte

Abstract

This paper discusses five algorithms to solve linear integer programming problems
that use the rational function techniques introduced by A. Barvinok. We report on
the first ever experimental results based on these techniques.

1 Introduction

In 1993 Barvinok gave an algorithm to count the lattice points in a convex rational
polytope in polynomial time on the input size when the dimension of the polytope
is fixed (see Barvinok (1994); Barvinok and Pommersheim (1999); Barvinok and
Woods (2003) and the references within). The purpose of this article is to explain
five algorithms in which Barvinok’s techniques can be used to optimize; namely, to
find the optimal value of

maximize c · x subject to Ax ≤ b, x ≥ 0, x ∈ Z
d, (IP)

where the input data are an m × d integral matrix A, an integral m-vector b, and
an integral d-vector c. All five algorithms were at least partially implemented. The
three most successful algorithms, the BBS algorithm, the digging algorithm, and the
single cone digging algorithm, appear now in the second release of the computer
software LattE (see De Loera et al. (2004a,b,c)). We solved several challenging
knapsack problems and compared the performance of LattE with the mixed-integer
programming solver CPLEX version 6.6.

For simplicity, and without loss of generality, we assume that the input data describe
a nonempty full-dimensional convex polytope P = {x ∈ R

d : Ax ≤ b, x ≥ 0}. Lattice

Preprint submitted to Elsevier Science 4 May 2005

points will be encoded as the exponent vectors of monomials. For example, (2,−11)
is represented by z2

1z
−11
2 . It is important to note that we will often write za as a

short notation for the multivariate monomial za1

1 z
a2

2 . . . zad

d . The following theorem
of Barvinok is the starting point of this article:

Lemma 1 (Theorem 4.4 in Barvinok and Pommersheim (1999)) Assume d,
the dimension, is fixed. Given a convex rational polytope P = {x : Ax ≤ b, x ≥ 0},
the multivariate generating function f(P ; z) =

∑

a∈P∩Zd za can be written in polyno-
mial time in the form

f(P ; z) =
∑

i∈I

Ei

zui

d
∏

j=1
(1 − zvij)

, (1)

where I is a polynomial-size indexing set, and where Ei ∈ {1,−1} and ui, vij ∈ Z
d

for all i and j.

Thus, the exponentially-large sum of monomials in the generating function can be
written as a short sum of rational functions. Intuitively, to obtain Ei ∈ {1,−1}
and ui, vij ∈ Z

d in (1), Barvinok’s algorithm decomposes the polytope P into simple
cones. The vectors ui, vij are the rays and vertices of the pieces of the decomposition,
and Ei is plus or minus one depending whether we add or subtract the cone. For
a detailed description of Barvinok’s algorithm proving lemma 1, examples, and our
implementation of it see Barvinok and Pommersheim (1999); De Loera et al. (2004a).
We call such an expression a Barvinok rational function. Consider for example the
polygon presented in Figure 1. This is the feasible region of the integer program
maximize 100x+ 90y subject to x+ y ≤ 100, x ≤ 50, x, y ≥ 0, x, y ∈ Z

d.

100

100

50

50

C=(100, 90)

(0,0)

Fig. 1. A simple integer program

The associated Barvinok rational function is in this case

1

(1 − z1)(1 − z2)
+

z50
1

(1 − z−1
1)(1 − z2)

+
z100
2

(1 − z−1
1)(1 − z2)

+
z50
1 z

50
2

(1 − z−1
1)(1 − z−1

1 z2)
.

In this easy example, the cone decomposition of the polytope is trivial and the
exponent vectors of denominators are the ray vectors of the four cones defining
each vertex of the quadrilateral. The numerators are the just the four vertices. Of
course, in general, Barvinok’s decomposition is more complicated. We now describe

2

the integer algorithms in Sections 2 and 3. Section 4 presents the computational
tests we performed and some final comments.

2 Algorithm: Binary Search

We begin with the most straightforward integer programming algorithm. It is an
immediate consequence of Lemma 1, no extra tools needed: Clearly using binary
search, one can turn any feasibility or counting oracle into an algorithm that solves
Problem (IP). By counting the number of lattice points in P that satisfy c · x ≥M ,
we can narrow the range for the maximum value of c · x, then we iteratively look
for the largest integer M where the count is non-zero. This idea was proposed in
Barvinok and Pommersheim (1999):

Algorithm: (BBS):

Input: A ∈ Z
m×d, b ∈ Z

m, c ∈ Z
d.

Output: The optimal value M = maximize {c · x : Ax ≤ b, x ≥ 0, x ∈ Z
d}.

(1) Using the linear programming relaxations of problem (IP) let M equal to
dmax{c · x : Ax ≤ b, x ≥ 0}e and let m equal to bmin{c · x : Ax ≤ b, x ≥ 0}c.
Thus [m,M] is the initial range for the binary search. Let P = {x : Ax ≤ b, x ≥
0}.

(2) While M > m do
new := dM+m

2
e.

Using Barvinok’s algorithm compute qnew = |P ∩ {x : cx ≥ new} ∩ Z
d|.

If qnew > 0 then set m = new,
else M = new − 1.

Return M .

We stress that Barvinok’s original counting algorithm relied on H.W. Lenstra Jr.’s
polynomial time algorithm for integer programming in a fixed number of variables
(Lenstra, 1983), but shortly after Barvinok’s breakthrough, Dyer and Kannan (Dyer
and Kannan, 1997) showed that this dependence can be avoided by a short-vector
computation using the LLL algorithm (Schrijver, 1986). This pure version is what
is implemented in our software LattE (De Loera et al., 2004a,c). Therefore the BBS
algorithm gives a new proof of the polynomiality of linear integer programming in
fixed dimension. To our knowledge this is the first time such an algorithm has been
fully implemented.

3

3 Monomial Substitution for Integer Optimization

All lattice points of a polytope P can be encoded as the Barvinok rational function
f(P ; z) as in Equation (1). Remember that if we were to expand Equation (1) into
monomials we would get f(P ; z) =

∑

α∈P∩Zd zα. But this expansion is generally a
very expensive computational operation, because there might be exponentially many
monomials. All computations have to be done by manipulating only the rational
functions that describe Equation (1).

Barvinok’s encoding is not only compact, but also parametric. For example, there
are, for each positive integer v, (v + 1)2 lattice points in the square with vertices
(0, 0), (v, 0), (0, v), (v, v). Its generating function, regardless of the value of v, is rep-
resented by the sum

1

(1 − z1) (1 − z2)
+

z1
v

(1 − z1
−1) (1 − z2)

+
z2

v

(1 − z2
−1) (1 − z1)

+
z1

vz2
v

(1 − z1
−1) (1 − z2

−1)
.

From the Barvinok rational function f(P ; z) of a polytope P , the number of lattice
points in P is the limit when the vector (z1, . . . , zd) goes to (1, 1, . . . , 1). We cannot
simply substitute this vector because it is a singularity of the rational function
expression. What we use instead is elementary complex analysis, namely residue
calculations, to extract these values. See De Loera et al. (2004a) for practical details
on how to carry on such calculations.

For integer programming it will be extremely important to be able to substitute
general monomials ya1

1 y
a2

2 . . . yan
n into the variables zi. We rely on the following result

of Barvinok and Woods (Barvinok and Woods, 2003) to guarantee that the change of
variables can be done efficiently using only rational functions and avoiding difficulties
with singularities:

Lemma 2 (Theorem 2.6 in Barvinok and Woods (2003)) Let us fix k, the
number of binomials present in the denominator of a rational function. Given a
rational function sum g of the form

g(z) =
∑

i∈I

αi

zui

k
∏

j=1
(1 − zvij)

,

where ui, vij are integral d-dimensional vectors, αi are rational numbers, and a mono-
mial map ψ : C

n −→ C
d given by the variable change zi → yli1

1 yli2
2 . . . ylin

n (with
lij ∈ Z) whose image does not lie entirely in the set of poles of g(z), i.e. the set
of roots of the denominators in g(z), then there exists a polynomial time algorithm
which computes the function g(ψ(y)) as a sum of rational functions of the same
shape as g(z).

For a given cost vector c ∈ Z
d, if we use Lemma 2 to make the substitution zk = tck ,

4

Equation (1) yields, on one hand, a univariate rational function in t:

f(P ; t) =
∑

i∈I

Ei

tc·ui

∏d
j=1(1 − tc·vij)

. (2)

On the other hand, observe that if we make the substitution directly into the mono-
mial sum expansion of f(P ; z), we have that the multivariate monomial za1

1 z
a2

2 . . . zad

d

becomes tc·a. We obtain the relation

f(P ; t) =
∑

a∈P∩Zd

tc·a = kM t
M + kM−1t

M−1 + kM−2t
M−2 + . . . , (3)

where M is the optimal value of our integer program and where ks counts the
number of feasible integer solutions with objective function value s. After the mono-
mial substitution, the IP maximum value equals the highest degree of the univariate
polynomial f(P ; t). If we have a way to compute the degree of this polynomial
we have solved Problem (IP). For example, in the easy integer program of Figure
1, if we substitute z1 → t100 and z2 → t90, using the cost vector c = (100, 90),
and then expand the Barvinok rational function into monomials we would have
t9500 + lower degree terms in t because 9500 is the optimal maximal value uniquely
achieved at the point (50, 50). There are in fact many distinct ways to find the degree
of a “black-box” univariate polynomial (i.e. a polynomial which we can evaluate at
rational numbers but we do not see explicitly its terms). It is worth presenting three
independent methods that exemplify the main tools available:

3.1 Algorithm: Numerical Complex Integration

To find the optimum value of an integer program we can use the following elementary
lemma of complex analysis (any complex analysis book has it, but we recommend
Henrici (1974) as a practical reference):

Lemma 3 (Argument principle) Let C be a simple closed curve in the complex
plane that contains no roots of a polynomial p(z). Then the number of roots of p(z)
inside the curve C, counted with multiplicity, equals

1

2πi

(

∫

C

p′(z)

p(z)
dz

)

.

By the fundamental theorem of algebra we know that the total number of roots of
p(z) equals the degree of p(z). Thus Lemma 3 gives the degree of p(z) when the curve
C contains all the roots. In practice, we can consider a large square C centered at
the origin of side 2N . The number N needs to be large enough to contain all roots
of our polynomial. Thus we need an upper bound on the absolute value of the roots.
This upper bound is guaranteed by the following classical result of Cauchy (see
Chapter VII of Marden (1966)):

5

Lemma 4 (Cauchy’s bound on the absolute value of roots) All the roots of
the polynomial p(z) = anz

n + an−1z
n−1 + · · · + a0 lie in the open disc

{

z ∈ C : |z| < 1 + max
0≤j≤n

∣

∣

∣

∣

aj

an

∣

∣

∣

∣

}

.

Now in our case the coefficients aj are nothing else than the number of lattice points
in a given “slice” of the polytope by a hyperplane c · x = j. Thus, in general, aj

an
is

bounded by the total number of lattice points inside the polytope (a number we can
compute with Barvinok’s algorithm). Note that in practice, when the cost vector
c is generic, all coefficients aj are one and thus N = 2 suffices. Putting all these
together:

Algorithm: (Numerical Complex Integration):

Input: A ∈ Z
m×d, b ∈ Z

m, c ∈ Z
d.

Output: The optimal value M = maximize {c · x : Ax ≤ b, x ≥ 0, x ∈ Z
d}.

(1) Using Barvinok’s algorithm compute the rational function representation of the
generating function f(P ; z) for P = {x ∈ R

d : Ax ≤ b, x ≥ 0}.
(2) Set N equal to one plus the number of lattice points in P. When the cost vector

is generic N = 2 suffices.
(3) Using Lemma 2 perform the monomial substitution zi := tci . We obtain a

univariate polynomial f(P ; t) = p(t).

(4) Compute g(t) = p′(t)
p(t)

. It is given as a quotient of two sums of rational functions.

(5) Perform the numeric integration over the square of diagonal −N − iN,N + iN
numerically using, for example, Clenshaw-Curtis quadrature. Compute M =

1

2πi

(
∫ N

−N

g(s − i N)ds +

∫ N

−N

i g(N + i s)ds −

∫ N

−N

g(s + i N)ds −

∫ N

−N

i g(−N + i s)ds

)

.

The fact that M is an integer can be used in the precision of the calculation.

3.2 Algorithms: Digging and Single Cone Digging

In (Lasserre, 2004), Lasserre proposed an asymptotic heuristic method for solving
integer programs, or at least providing an upper bound on the optimal value, based
on Barvinok’s rational functions: Consider again Problem (IP). From Equation (1)
and the indices i ∈ I, define sets ηi by ηi = {j ∈ {1, ..., d} : c · vij > 0}, and define
vectors wi by wi = ui −

∑

j∈ηi
vij. Let ni denote the cardinality of ηi. Now define

M = max{c · wi : i ∈ I}, S = {i ∈ I : c · wi = M} and set σ =
∑

i∈S Ei(−1)ni .
Note that M denotes the highest exponent of t appearing in the expansions of the
rational functions defined for each i ∈ I in Equation (2). The number σ is the sum

6

of the coefficients of tM in these expressions, that is, σ is the coefficient of tM in
f(P ; t). Now with these definitions and notation we can state:

Lemma 5 (Theorem 3.1 in Lasserre (2004)) If c · vij 6= 0 for all i ∈ I, j ∈
{1, . . . , d}, and if σ 6= 0, then M is the optimal value π of the integer program
maximize {c · x : Ax ≤ b, x ≥ 0, x ∈ Z

d}.

When the hypotheses of Lemma 5 are met, from an easy inspection we could recover
the optimal value of an integer program. If we assume that c is chosen randomly
from some large cube in Z

d, then the first condition is easy to obtain. Unfortunately,
our computational experiments (see Section 4) indicate that the condition σ 6= 0
is satisfied only occasionally. Thus an improvement on the approach that Lasserre
proposed is needed to make the heuristic terminate in all instances.

Next we present a simple improvement to Lasserre’s heuristic and give another
integer programming algorithm. We call it the digging algorithm. This algorithm
digs for the coefficient of the next highest appearing exponent of t doing a controlled
Laurent series expansion. For simplicity our explanation assumes the easy-to-achieve
condition c · vij 6= 0, for all vij:

This time we wish to find explicit optimal solutions not just the optimal value of
Problem (IP). The reader will observe the modifications necessary are small. Take
again Equation (1) computed via Barvinok’s algorithm. Now, for the given c, instead
of the substitutions zk = tck we make the substitutions zk = ykt

ck , for k = 1, . . . , d.
These substitutions into (1) yield a sum of multivariate rational functions in the
vector variable y and scalar variable t:

g(P ; y, t) =
∑

i∈I

Ei

yuitc·ui

∏d
j=1(1 − yvij tc·vij)

. (4)

On the other hand, the substitution on the left-side of Equation (1) gives the fol-
lowing sum of monomials.

g(P ; y, t) =
∑

α∈P∩Zd

yαtc·α =
−∞
∑

n=M

(
∑

α∈P∩Zd,α·c=n

yα)tn. (5)

Both equations, (5) and (4), represent the same function g(P ; y, t). Thus, if we
compute a Laurent series of (4) that shares a region of convergence with the series
in (5), then the corresponding coefficients of both series must be equal. In particular,
because P is a polytope, the series in (5) converges almost everywhere. Thus if we
compute a Laurent series of (4) that has any nonempty region of convergence, then
the corresponding coefficients of both series must be equal. Barvinok’s algorithm
provides us with the right hand side of (4). We need to obtain the coefficient of

7

highest degree in t from the expanded Equation (5). We compute a Laurent series
for it using the following procedure: Apply the identity

1

1 − yvij tc·vij
=

−y−vij t−c·vij

1 − y−vij t−c·vij
(6)

to Equation (4), so that any vij such that c · vij > 0 can be changed in “sign” to be
sure that, for all vij in (4), c · vij < 0 is satisfied (we may have to change some of the
Ei, ui and vij using our identity, but we abuse notation and still refer to the new
signs as Ei and the new numerator vectors as ui and the new denominator vectors
as vij). Then, for each of the rational functions in the sum of Equation (4) compute
a Laurent series of the form

Ei y
uitc·ui

d
∏

j=1

(1 + yvij tc·vij + (yvij tc·vij)2 + (yvij tc·vij)3 + . . .). (7)

Multiply out each such product of series and add the resulting series. This yields
precisely the Laurent series in (5). Thus, we have now the steps of an algorithm to
solve integer programs:

Algorithm: (Digging):

Input: A ∈ Z
m×d, b ∈ Z

m, c ∈ Z
d.

Output: The optimal value and an optimal solution of maximize {c·x : Ax ≤ b, x ≥
0, x ∈ Z

d}.

(1) Using Lemmas 1 and 2 compute the rational function expression of Equation
(4). Use the identity (6) as necessary to enforce that all vij in (4) satisfy c ·vij <
0.

(2) Via the expansion formula (7), multiply out the factors and add the terms,
grouping together those of the same degree in t. Thus we find (5) by calculating
the terms’ coefficients. Proceed in decreasing order with respect to the degree of
t. This can be done because, for each series appearing in the expansion formulas
(7), all c ·vij are negative, so that the terms of the series are given in decreasing
order with respect to the degree of t.

(3) Continue calculating the terms of the expansion (5), in decreasing order with
respect to the degree of t, until a degree M of t is found such that for some
α ∈ Z

d, the coefficient of yαtM is non-zero in the expansion (5).
(4) Return “M” as the optimal value of the integer program and return “α” as an

optimal solution.

Note that if one needs to solve a family of integer programs where only the cost
vector c is changing, then Equation (1) is computed only once applying the steps of

8

the algorithm above for each cost vector to obtain all the optimal values.

Given the polytope P := {x ∈ R
d : Ax ≤ b, x ≥ 0}, the tangent cone or supporting

cone Kv at a vertex v of P isKv = v+ {u ∈ R
d : v+δu ∈ P for all sufficiently small δ >

0}. A set of linear inequalities defining Kv consists of those facet inequalities of P
that turn into equalities when evaluated at v. We observed in De Loera et al. (2004a)
that a major practical bottleneck of the original Barvinok algorithm in Barvinok
(1994) is the fact that a polytope may have too many vertices. Since originally one
visits each vertex to compute a rational function at each tangent cone, the result can
be costly. Therefore a natural idea for improving the digging algorithm is to com-
pute with a single tangent cone of the polytope and revisit the digging calculation
for a smaller sum of rational functions. Problem (IP) has the linear programming
relaxation (LP) maximize c · x subject to x ∈ P. One of the vertices of P gives
the optimal value for (LP) (Schrijver, 1986). Let V (P) be the vertex set of P and
v ∈ V (P) be a vertex such that c · v is the optimal value for (LP). Then, clearly,
the tangent cone Kv at v contains P . So, if we can find an integral point x∗ ∈ Kv

such that c · x∗ ≥ c · x, ∀x ∈ P ∩ Z
d and x∗ ∈ P , then x∗ is an optimal solution

for (IP). Note that the formulas of rational functions that we used for the original
digging algorithm still hold for the rational functions of the tangent cone Kv. In
what follows we assume that c · α 6= 0 for all rays of Kv.

Algorithm: (Single Cone Digging):

Input: A ∈ Z
m×d, b ∈ Z

m, c ∈ Z
d

Output: The optimal value and an optimal solution of maximize {c·x : Ax ≤ b, x ≥
0, x ∈ Z

d}.

(1) Compute a vertex v of P such that c · v = maximize {c · x : Ax ≤ b, x ≥ 0}.
(2) Compute the tangent cone Kv at v and from Lemma 1 compute the Barvinok

rational function (4) encoding of the lattice points inside Kv.
(3) Use the identity (6) as necessary to enforce that all vij in (4) satisfy c · vij < 0.
(4) Via the expansion formulas (7), find (5) by calculating the terms’ coefficients.

Proceed in decreasing order with respect to the degree of t. This can be done
because, for each series appearing in the expansion formulas (7), the terms of
the series are given in decreasing order with respect to the degree of t.

(5) Continue calculating the terms of the expansion (5), in decreasing order with
respect to the degree of t, until a degree M of t is found such that:
• for some α ∈ Z

d, the coefficient of yαtM is non-zero in the expansion (5),
• Aα ≤ b, α ≥ 0.

(6) Return “M” as the optimal value of the integer program and return “α” as an
optimal solution.

Unfortunately, although the necessary rational functions can be computed in poly-
nomial time when the dimension is assumed to be fixed, the digging algorithm may
have to compute an exponential number of coefficients before finding one that does

9

not vanish. We see this is true even for fixed dimension two in the following simple
example found by P. Huggins (Huggins, 2004):

For a positive integerN define the quadrilateralQN , with vertices (1/2, 1/2), (3/4, 1/2),
(1/2, 3/4), (1, N). It contains the single lattice point (1, N). By Brion’s theorem
(Barvinok and Pommersheim, 1999) we know that the Barvinok rational function
associated to QN can be written as the sum of the rational functions of the tan-
gent cones at the vertices. In particular for the vertex (1/2, 1/2) the unique rational
function is z1z2

(1−z1)(1−z2)
. Now taking the cost function to be given by c = (−1,−1)

one must make the monomial substitutions z1 = y1t
−1 and z2 = y2t

−1 into the ratio-
nal function above. Thus we obtain y1y2t−2

(1−y1t−1)(1−y2t−1)
. Its Laurent expansion contains

y1y2t
−2, y1y

2
2t

−3, y1y
3
2t

−4, . . . , y1y
N−1
2 t−N . Therefore the digging algorithm will calcu-

late the coefficients for these N − 1 terms, which will vanish, before reaching the
term y1y

N
2 t

−N−1. The algorithm performs an exponential number of steps in the
binary size of the input (namely log(N)).

3.3 Algorithm: Hadamard products

Finally, we present the most abstract algorithm of all. Nevertheless, it has good
theoretical complexity. For fixed d this algorithm runs in polynomial time (on the
input size) based on the polynomiality of Barvinok’s counting algorithm (Lemma
1), Lemma 2, and Corollary 1 below.

Let g1, g2 be Laurent power series in z1, z2, . . . , zd, g1(z) =
∑

m∈Zd β1mz
m and g2(z) =

∑

m∈Zd β2mz
m. The Hadamard product g = g1?g2 is the power series g(z) =

∑

β1mβ2mz
m.

Note that the Hadamard series depends on the particular Laurent series expansion
of the functions. Barvinok and Woods (2003) used Hadamard products to carry
out Boolean operations with sets of lattice points when they are encoded as ratio-
nal functions. The Hadamard product is a bilinear operation on rational functions.
Thus the Hadamard product of two sums of rational functions is simply the sum
of Hadamard products carried out for pairs of summands as explained in Barvinok
and Woods (2003). The following lemma states that this key subroutine is efficient:

Lemma 6 (Lemma 3.4 and Theorem 3.6 in Barvinok and Woods (2003))
Let us fix k, the number of binomials in the denominators. There exists a polynomial
time algorithm, which, given two functions

g1(z) =
zp1

∏k
j=1(1 − za1j)

and g2(z) =
zp2

∏k
j=1(1 − za2j)

with aij, pi ∈ Z
d computes a function h(z) in the form

h(z) =
∑

i∈I

βi

zqi

∏s
j=1(1 − zbij)

10

with integer vectors qi, bij, rational numbers βi, and with s ≤ 2k such that h(z) is a
Laurent expansion of the Hadamard product g1(z) ∗ g2(z).

Barvinok and Wood’s algorithmic proof of Lemma 6 relies on the repeated use
of Barvinok’s algorithm (Lemma 1) in many simpler polytopes, one for each pair
of rational functions (see Lemma 3.4 in Barvinok and Woods (2003)). Note that
the Hadamard product selects monomials that belong to both g1 and g2. The key
property is that the Hadamard product m1 ∗m2 of two monomials m1,m2 is zero
unless m1 = m2. That is why we recover an intersection of the monomials present
in the generating functions. We use this to extract an explicit optimal value after
we do the monomial substitution. This is a particular case of Lemma 8 in De Loera
et al. (2004b) but we include the proof here:

Corollary 1 Assume the dimension d is fixed. Let P be the polytope {x ∈ R
d : Ax ≤

b, x ≥ 0}. Suppose the generating function f(P ; z) =
∑

α∈P∩Zd zα is represented as
a Barvinok rational function and let c be any integer cost vector. We can extract
M := max{α · c : α ∈ P ∩ Z

d} in polynomial time.

Proof: For the cost vector c perform a monomial substitution zi := tci . Such a mono-
mial substitution can be computed in polynomial time by Lemma 2. The effect is
that the polynomial f(P ; z) becomes, as in Equations (2) and (3), a univariate poly-
nomial f(P ; t). We determine the degree of f(P ; t) in t using a binary search idea,
but, unlike Section 2, we do not have to call explicitly Barvinok’s algorithm with a
new polytope at each iteration. We create the interval polynomial i[p,q](t) =

∑q
i=p t

i

which obviously has a Barvinok rational function representation. Using Lemma 6
compute the intersection of i[p,q](t) with f(P ; t). This yields only those monomials
whose degree in the variable t lies between p and q. We will keep shrinking the in-
terval [p, q] until we find the degree, we do this following a binary search procedure
to update p, q. We need a bound for the degree in t of g(t) to start a binary search.
An upper bound U is for example the linear programming bound. It is clear that
log(U) is polynomially bounded. In no more than log(U) steps one can determine
the highest degree M of f(P ; t).

Algorithm: (Hadamard product):

Input: A ∈ Z
m×d, b ∈ Z

m, c ∈ Z
d.

Output: The optimal value M = maximize {c · x : Ax ≤ b, x ≥ 0, x ∈ Z
d}.

(1) Using Barvinok’s algorithm compute the rational function representation of the
generating function f(P ; z) for P = {x ∈ R

d : Ax ≤ b, x ≥ 0}.
(2) Following Corollary 1, do monomial substitutions and Hadamard products nec-

essary to find the optimal value M .

11

4 Computational Experiments

We evaluated the five algorithms: In our experiments, the numerical complex inte-
gration algorithm and the Hadamard algorithm were not competitive: In the first
case, the integration step was a major bottleneck of computation. For example, it
took over seven minutes to numerically integrate rational functions of real degree 40
encoding the lattice points of a 20 by 20 square even though we simply took N = 1
and we used only 3 digits of accuracy. Perhaps the structure of these integrals or
better integration algorithms can be exploited in the future. Finally, a dozen small
examples computed with the help of LattE and Maple indicated that the Hadamard
product algorithm is slower than Algorithm BBS.

The remaining three algorithms were compared with the default algorithm imple-
mented in CPLEX MIP solver for version 6.6. The digging algorithm, the single cone
digging algorithm, and the BBS algorithm, are implemented in LattE and available
at www.math.ucdavis.edu/∼latte. We report our experience solving hard knap-
sack problems from Aardal and Lenstra (2002); Cornuéjols et al. (1997). We selected
these problems because they are challenging and because the current implementa-
tion of LattE can only handle problems with up to 30 variables. We refer to Table 1
for the data used here. Their form is maximize c·x subject to ax = b, x ≥ 0, x ∈ Z

d,
where b ∈ Z and where a ∈ Z

d with gcd(a1, . . . , ad) = 1. For the cost vector c, we
took the first d entries of the vector:
(213,−1928,−11111,−2345, 9123,−12834,−123, 122331, 0, 0).

All computations were done on a 1 GHz Pentium PC running Red Hat Linux. For
the Barvinok-based algorithms we set a limit of 2 hours of computation. After that
limit the problem was considered unsolved. On the other hand, we allowed CPLEX
6.6 to run until it either solved the problem or it ran out of memory. Table 2
provides the optimal values and an optimal solution for each problem. As it turns
out, these integer programs have very interesting geometry because there is exactly
one feasible integer solution for each problem. With one exception, CPLEX 6.6.
could not solve the given problems. It generated many nodes before running out
of memory. Note that whenever the digging algorithm found the optimal value, it
did so much faster than the BBS algorithm. This is interesting, because we saw
the worst-case complexity for the digging algorithm is exponential even for fixed
dimension, while the BBS has polynomial complexity in fixed dimension. From Table
2 and Table 3, one can see that the single cone digging algorithm is the fastest
algorithm. It only failed to solve two of the instances. This algorithm is also more
memory efficient than the original digging algorithm, since the number of unimodular
cones for the single cone digging algorithm is much smaller. The original digging
algorithm came in second place. It failed to find a solution for problems cuww2,
cuww4, and cuww5. In those instances the expansion step becomes costly when more
coefficients have to be computed. In these three examples, we computed coefficients
for more than 2,500,000, 400,000, and 100,000 powers of t; all turning out to be

12

Problem a b

cuww1 12223 12224 36674 61119 85569 89643482

cuww2 12228 36679 36682 48908 61139 73365 89716839

cuww3 12137 24269 36405 36407 48545 60683 58925135

cuww4 13211 13212 39638 52844 66060 79268 92482 104723596

cuww5 13429 26850 26855 40280 40281 53711 53714 67141 45094584

prob1 25067 49300 49717 62124 87608 88025 113673 119169 33367336

prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215207

prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424800

prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575666

prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442885

prob6 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382775

prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267752

prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733991

prob9 3719 20289 29067 60517 64354 65633 76969 102024 106036 119930 13385100

prob10 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925262

Table 1. knapsack problems.

13

Runtime for Runtime for Runtime for Runtime for

Problem Value Solution digging (Original) digging (S. Cone) BBS CPLEX 6.6

cuww1 1562142 [7334 0 0 0 0] 0.4 sec. 0.17 sec. 414 sec. > 1.5 h (OM)

cuww2 -4713321 [3 2445 0 0 0 0] > 2 h >2 h 1.8 h > 0.75 h (OM)

cuww3 1034115 [4855 0 0 0 0 0] 1.4 sec. 0.24 sec. 1.7 h > 0.75 h (OM)

cuww4 -29355262 [0 0 2642 0 0 0 0] > 2 h > 2 h > 2 h > 0.75 h (OM)

cuww5 -3246082 [1 1678 1 0 0 0 0 0] > 2 h 147.63 sec. > 2 h > 0.75 h (OM)

prob1 9257735 [966 5 0 0 1 0 0 74] 51.4 sec. 18.55 sec. > 2 h > 1 h (OM)

prob2 3471390 [853 2 0 4 0 0 0 27] 24.8 sec. 6.07 sec > 2 h > 0.75 h (OM)

prob3 21291722 [708 0 2 0 0 0 1 173] 48.2 sec. 9.03 sec. > 2 h > 1.5 h (OM)

prob4 6765166 [1113 0 7 0 0 0 0 54] 34.2 sec. 9.61 sec. > 2 h > 1.5 h (OM)

prob5 12903963 [1540 1 2 0 0 0 0 103] 34.5 sec. 9.94 sec. > 2 h > 1.5 h (OM)

prob6 2645069 [1012 1 0 1 0 1 0 20 0 0] 143.2 sec. 19.21 sec. > 2 h > 2 h (OM)

prob7 22915859 [782 1 0 1 0 0 0 186 0 0] 142.3 sec. 12.84 sec. > 2 h > 1 h (OM)

prob8 3546296 [1 385 0 1 1 0 0 35 0 0] 469.9 sec. 49.21 sec. > 2 h > 2.5 h (OM)

prob9 15507976 [31 11 1 1 0 0 0 127 0 0] 0.39 h 283.34 sec. > 2 h 4.7 sec.

prob10 47946931 [0 705 0 1 1 0 0 403 0 0] 250.6 sec. 29.28 sec. > 2 h > 1 h (OM)

Table 2. Optimal values, optimal solutions, and running times for each problem. Symbol > x h (OM), means CPLEX ran out of memory
after x hours. The symbol > 2 h means that the problem was not solved before two hours of computation.

14

problem Original Original Single Cone Single Cone

Digging (A) Digging (B) Digging (A) Digging (B)

cuww 1 110 0 25 0

cuww 2 386 > 2,500,000 79 > 2,500,000

cuww 3 346 0 49 0

cuww 4 364 > 400,000 51 > 400,000

cuww 5 2,514 > 100,000 453 578,535

prob 1 10,618 74,150 1,665 74,150

prob 2 6,244 0 806 0

prob 3 12,972 0 2,151 0

prob 4 9,732 0 1,367 0

prob 5 8,414 1 2,336 1

prob 6 26,448 5 3,418 5

prob 7 20,192 0 2,015 0

prob 8 62,044 0 6,523 0

prob 9 162,035 3,558 45,017 3,510

prob 10 38,638 256 5,128 256

Table 3
Data for the digging algorithm. A := number of unimodular cones and B := number of
digging levels

0. The digging algorithm is slower than CPLEX in problem prob9 because during
the execution of Barvinok’s unimodular cone decomposition (see pages 15 and 16 of
Barvinok and Pommersheim (1999)) more than 160,000 cones are generated, leading
to an enormous rational function for f(P ; t). Moreover, for prob9 more than 3,500
coefficients turned out to be 0, before a non-zero leading coefficient was detected.
Finally, in problems cuww1, cuww3, prob2, prob3, prob4, prob6, and prob8, no
digging was necessary at all, that is, Lasserre’s heuristic condition did not fail here.
For all other problems, Lasserre’s condition did fail and digging steps were necessary
to find the first non-vanishing coefficient in the expansion of f(P ; t). See Table 3.
To conclude we have two comments: First, it should be mentioned these are not
the only known algorithms based on Barvinok’s rational functions. For example, an
algorithm via Gröbner bases is presented in De Loera et al. (2004b). Finally, we
would like to point out that other non-standard approaches have been tried in our
test instances. For example a lattice approach to tackle feasibility version of the
knapsack problems was used in Aardal and Lenstra (2002), and a test set approach
was used for the cuww-instances in Cornuéjols et al. (1997).

15

Acknowledgments: We are grateful to K. Aardal, A. Barvinok, J.B. Lasserre, B.
Sturmfels, and R. Weismantel for useful discussions. This research was supported
by NSF grant DMS-0309694 and NSF VIGRE grant DMS-0135345.

References

Aardal, K. and Lenstra, A.K. Hard equality constrained integer knapsacks. Prelim-
inary version in W.J. Cook and A.S. Schulz (eds.), Integer Programming and
Combinatorial Optimization: 9th International IPCO Conference, Lecture Notes
in Computer Science vol. 2337, Springer-Verlag, 2002, 350–366.

Barvinok, A.I. Polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Math of Operations Research 19, 1994, 769–779.

Barvinok, A.I. and Pommersheim, J. An algorithmic theory of lattice points in
polyhedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-
1997), Math. Sci. Res. Inst. Publ. 38, Cambridge Univ. Press, Cambridge, 1999,
91–147.

Barvinok, A.I. and Woods, K. Short rational generating functions for lattice point
problems. Available at arXiv.math.CO.0211146. J. Amer. Math. Soc. 16, 2003,
957–979.

Cornuéjols, G., Urbaniak, R., Weismantel, R., and Wolsey, L.A. Decomposition of
integer programs and of generating sets. R. E. Burkard, G. J. Woeginger, eds.,
Algorithms–ESA 97. Lecture Notes in Computer Science 1284, Springer-Verlag,
1997, 92–103.

De Loera, J.A., Hemmecke, R., Tauzer, J., and Yoshida, R. Effective lattice point
counting in rational convex polytopes. Journal of Symbolic Computation, vol. 38,
2004, 1273–1302.

De Loera, J.A, Haws, D., Hemmecke, R., Huggins, P., Sturmfels, B., and Yoshida,
R. Short rational functions for toric algebra and applications. Journal of Symbolic
Computation, Vol. 38, 2 , 2004, 959–973.

De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., and Yoshida,
R. A User’s Guide for LattE v1.1, 2003. Software package LattE is available at
http://www.math.ucdavis.edu/∼latte/

Dyer, M. and Kannan, R. On Barvinok’s algorithm for counting lattice points in
fixed dimension. Math of Operations Research 22, 1997, 545–549.

Henrici, P. Applied and computational complex analysis., vol. 1, Wiley, New York,
1974.

Huggins P.M. Lattice point enumeration via rational functions and applications to
optimization and statistics., senior undergraduate thesis, Department of mathe-
matics, University of California Davis, 2004.

Lasserre, J.B. Integer programming, Barvinok’s counting algorithm and Gomory re-
laxations. Operations Research Letters, 32, No.2, 2004, 133–137.

Lenstra, H.W. Jr. Integer Programming with a fixed number of variables. Mathemat-
ics of Operations Research, 8, 1983, 538–548.

16

Marden, M. Geometry of polynomials American Mathematical Soc., No. 3, Mathe-
matical Surveys, Providence, Second Edition, 1966.

Schrijver, A. Theory of Linear and Integer Programming. Wiley-Interscience, 1986.

17

