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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of

organisms.
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Why we care?

• We can analyze changes that have occurred in evolution of different

species.

• Phylogenetic relations among different species help predict which species

might have similar functions.

• We can predict changes occurring in rapidly changing species, such as

HIV virus.

• Analyze cospeciation between hosts and their parasites.

• etc....
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150 years since the introduction of the theory of

evolution
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Rise of cladistics

E.C. Zimmerman (30s) and W. Hennig (50s) began to define objective measures

for reconstructing phylogenies (cladograms) based on the analysis of shared

morphological ancestral characteristics  of fossils and living organisms



Phylogeny reconstruction based on molecular data

Zuckerkandl and Pauling (60s) first invoked the idea of using molecular

data for reconstructing phylogenetic history.

They published a comparison of several species’ hemoglobin fingerprints,

observing that the level of dissimilarity of protein fingerprints

corresponded roughly to the phylogenetic distance between source species



Major methodological developments



But see Doolittle 2000 (in Scientific American) 

“Uprooting the tree of Life”
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Figure 1: Parametric ML tree estimated from cpDNA intron and intergenic
sequences. Numbers above branches indicate bootstrap support percentages
(over 50%) obtained by 1000 maximum parsimony searches with branch
swapping.
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Applications of phylogeny
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Figure 2: Ultrametric ML trees for host grasses and their endophytes. Hosts
and their endophytes are indicated opposite each other or by connecting
dashed lines.
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We use statistical methods to reconstruct and to analyze a phylogenetic
tree from DNA sequences. For example, to reconstruct a phylogenetic tree
we use:

The maximum likelihood estimation (MLE) methods: These describe
evolution in terms of a discrete-state continuous-time Markov process.

The Balanced Minimum Evolution (BME) method: This is a distance
based method and weighted Least Square method. The Neighbor-
Joining (NJ) method is a greedy algorithm of the BME method (Steel
and Gasquel, 2008).

Bayesian inference for trees: Use Bayes Theorem and MCMC to estimate
the posterior distribution rather than obtaining the point estimation.
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Closeness

Tree uncertainty is a pervasive issue in phylogenetics.

To help cope with tree uncertainty, bootstrapping and Bayesian sampling
methods provide a collection of possible trees instead of a single tree
estimate.

Using bootstrapping or Bayesian sampling, one common practice is to
identify highly supported tree features (e.g. splits) which occur in almost
all the tree samples. Highly supported features are regarded as likely
features of the true tree.

Similarly, in simulation studies it is common to judge reconstruction methods
based on how close they get to the true tree.

This leads us to ask whether reconstruction accuracy (i.e. closeness to the
true tree) can be improved, by attempting to directly optimize accuracy.
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Bayes Estimator

Even though the true tree is unknown, we can still optimize reconstruction
accuracy using a Bayesian approach.

In the Bayesian view, the true tree is a random variable T distributed
according to the posterior distribution P (T |D), where D is input data such
as sequence data.

If d() measures distance between trees, and T ′ is a tree estimate, then the
expected distance between T ′ and the true tree is ET∼P (T |D)d(T, T ′).

Thus, to maximize reconstruction accuracy, we should choose our tree
estimate to be T ∗ = argminT ′ET∼P (T |D)d(T, T ′) where T ∗ is known as a
Bayes estimator.
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Tree Distances

Many popular distances between trees can be easily expressed as a squared
euclidean distance, after embedding trees in an appropriately chosen vector
space. Important examples include Robinson–Foulds distance (symmetric
difference), quartet distance, and the squared path difference.

With Robinson–Foulds distance, Holder showed the Bayes estimator with
the RF distance is the majority-rule consensus tree (Holder, Systematics
Biology 2008).

We focus on squared euclidean distances, specifically the squared path
difference.
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Path Difference Metrics

The path difference metric is a topological distance, i.e. it only depends
on the topologies of the tree.

The path difference metric vp(T ) ∈ R
(n
2), where n is the number of taxa,

is the integer vector whose ijth entry counts the number of edges between
leaves i and j in the tree T .

The path difference metric was studied in (Steel and Penny, 1993).

The squared path difference is

dp(T
′, T ) = ||vp(T ) − vp(T

′)||2.
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Example
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Example

For the trees T1 and T2 in the previous figure, we have

vp(T1) = (2, 3, 4, 4, 3, 4, 4, 3, 3, 2),

vp(T2) = (2, 4, 4, 3, 4, 4, 3, 2, 3, 3),

and
dp(T1, T2) = ||vp(T1) − vp(T2)||

2 = 6.

Here the coordinates of vp(T1) and vp(T2) are given by

(

v1,2, v1,3,, v1,4, v2,3, v2,4, . . . , v4,5

)

,

where vi,j is the number of edges between leaf i and j.
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Optimization

We want to find the optimal solution T ∗ such that

T ∗ = argminT ′ET∼P (T |D)dp(T, T ′).

Since the number of tree topologies on n taxa grows exponentially in n,
computing the Bayes estimator T ∗ under a general distance function can
be computationally hard (NP hard).
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Hill Climbing Techniques

However, hill climbing techniques such as those used in ML methods often
work quite well in practice for tree reconstruction. Hill climbing techniques
can similarly be used to find local minima of the empirical expected loss.

Hill climbing requires a way to move from one tree topology to another.
Three types of combinatorial tree moves are often used for this purpose;
Nearest Neighbor Interchange (NNI), Subtree-Prune-and-Regraft (SPR),
and Tree-Bisection-Reconnect (TBR).

Here we use NNI moves.

WMU 16



Nearest Neighbor Interchange

Here we assume unrooted trees (if we want to have a rooted tree we add
an outgroup and make it as unrooted tree with n + 1 taxa).

Suppose we have

where A, B, C, D are clades



Nearest Neighbor Interchange

So we can think of this as a tree with 4 leaves and since there are only
3 tree topologies we swap this tree with one of the following two different
tree topologies.

Suppose we have
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Strict Hill Climbing algorithm

1. Choose a starting tree T ′

2. Calculate ET∼P (T |D)d(T, T ′)

3. Compute all possible NNI neighbor trees T1, · · ·T2·(n−3)

4. Then do:

(a) For i = 1 · · · 2 · (n − 3) compute ET∼P (T |D)d(T, Ti)
(b) Move to the tree with the lowest expectation.

5. Record the tree at each step
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Simulations

For simulated data, we used the first 1000 examples from the data set
presented in (Guindon and Gasquel, 2003).

Trees on 40 taxa were generated according to a Markov process. For
each generated tree, 40 homologous sequences (no indels) of length 500
were generated, under the Kumura two-parameter (K2P) model, with a
transition/transversion ratio of 2.0. Specifically the Seq-Gen program was
used to generate the sequences. The data is available from the website
http://www.atgc-montpellier.fr/phyml/datasets.php.
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For each set of homologous sequences D in the simulated data, we used the
software MrBayes to obtain 15000 samples from the posterior distribution
P (T |D). Specifically, we ran MrBayes under the K2P model, discarded the
initial 25% of samples as a burn-in, used a 50 generation sample rate, and
ran for 1, 000, 000 generations in total.

We computed a ML tree estimate for each data set, using the hill climbing
software PHYML as described in the paper. We also computed a NJ tree
using the software PHYLIP, using pairwise distances computed by PHYLIP.
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Here NJ (N) is the neighbor joining tree constructed via neighbor in
PHYLIP package, ML (L) is the PHYML tree, MAP (M) is the MrBayes

sample with the highest posterior probability, and Bayes (B) is the Bayes
Estimator tree, estimated from MrBayes samples.
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Here NJ (N) is the neighbor joining tree constructed via neighbor in
PHYLIP package, ML (L) is the PHYML tree, MAP (M) is the MrBayes

sample with the highest posterior probability, and Bayes (B) is the Bayes
Estimator tree, estimated from MrBayes samples.

M

M

M

M M M
M

M
M

M

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

sequence divergence

ex
pe

ct
ed

 lo
ss

N

N

N
N

N
N

N
N

N

N

L

L

L

L L L
L

L
L

L

B

B

B

B B B
B

B
B

B

T

T

T

T T T
T

T
T

T

M
N
L
B
T

MAP
NJ
ML
Bayes
True

WMU 23



Ruriko Yoshida

Table 1: We give the performance of hill climbing, applied to several
different initial trees. The first two columns summarize how the local
minimum compared to the initial tree, on the 1000 simulated data sets.
The third column gives the average percentage by which hill climbing
decreases the path difference distance to the true tree. This is computed as
1− mean(dinitial/dfinal), where mean() denotes denotes geometric mean.
If either the initial or final distance to the true tree is zero, we add 1 to
both distances.

Initial tree Hill climbing improves Hill climbing worsens Avg drop in

distance to T true? distance to T true? distance to T true

ML tree 380 253 5.9%

Empirical MAP tree 508 185 17.9%

NJ tree 693 229 39.6%

WMU 24



Ruriko Yoshida

Table 2: The first two columns summarize how the local minimum compared
to the initial tree, on the 1000 simulated data sets. The third column gives
the average percentage by which hill climbing decreases ρ̂p. This is

computed as 1− mean(
√

ρ̂initial
p /ρ̂final

p ), where mean() denotes denotes

geometric mean. If either ρ̂initial
p or ρ̂final

p is zero, we add 1 to both.
Initial tree Hill climbing improves Hill climbing worsens Avg drop in

ρ̂p? ρ̂p? ρ̂p

ML tree 690 0 5.9%

Empirical MAP tree 870 0 8.6%

NJ tree 961 0 20.3%
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UK Statistical Phylogenetics Group

The group of biologists, computer scientists, and statisticians at UK:

http://www.cophylogeny.net/
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Why interdisciplinary and we have to collaborate?

UK Statistical Phylogenetics Group: The group of biologists, computer
scientists, and statisticians at UK:

Problems in Molecular Evolution arise from the area of Biology.

To analyze huge/messy data sets we need to use statistical methods.

To compute huge/messy data sets using statistics we need algorithms to
compute them efficiently.

Therefore we need to know how to collaborate with each other and we have
to know a little bit from each area.

GOAL: Learn how to communicate and collaborate with people from other
area.
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Thank you....

The ms is available at http://arxiv.org/abs/0911.0645 and the
source code, written in java, is available at
http://cophylogeny.net/research.php

Supported by NIH 1R01GM086888-01
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