Open Problems in

Geometry of Cophylogeny

Ruriko Yoshida
Dept. of Statistics University of Kentucky
Joint work with C. Schardl, J. Jaromczyk, and P. Huggins

Ruriko Yoshida

Figure 1: Ultrametric ML time trees for plant and endophyte data sets in [SScklurdl et al, 2008] constructed via BEAST. Sequences are from mainly intron sequences of endophyte tef A and $t u b B$ genes. Numeric values on nodes represent their posterior probabilities estimated by BEAST.

Cophylogeny

Suppose we have two sets of multi-species sequence data H and P. Let \mathcal{T}_{H} be the space of trees on H and \mathcal{T}_{P} be the space of trees on P.

Assuming that there is a distribution on the cross product of tree spaces for T_{H} and T_{P} where T_{H} is a phylogenetic tree for H and T_{P} is a phylogenetic tree for P. A cophylogeny is a conditional joint distribution $P\left(T_{H}, T_{P} \mid H, P\right)$ on $\mathcal{T}_{H} \times \mathcal{T}_{P}$ which satisfies

$$
P\left(T_{H}, T_{P} \mid H, P\right) \neq P\left(T_{H} \mid H, P\right) \cdot P\left(T_{P} \mid H, P\right)
$$

Note: Even though two phylogenetic trees are correlated, tree topologies of T_{H} and T_{P} might differ. We can apply this to species and gene trees.

Assume: in the evolution history a divergence of a gene or a speciation occurs once at a time,

6 different processes in a host-parasite association

cospeciation

extinction
(d)

host switch
(b)

"missing the boat"

independent speciation
(c)

failure to speciate
(f)

Geometry of Cophylogenetic trees

Definition: The support $S \subset \mathcal{T}_{H} \times \mathcal{T}_{P}$ of a cophylogeny is called a space of cophylogenetic trees.

Definition: Suppose the host or species tree T_{H} is given. The support of the conditional distribution $P\left(T_{P} \mid T_{H}, H, P\right), S_{T_{H}} \subset \mathcal{T}_{P}$, is called the space of cophylogenetic trees given T_{H}.

Remark: In general $S_{T_{H}} \neq \mathcal{T}_{P}$ and $S \neq \mathcal{T}_{H} \times \mathcal{I}_{P}$.
Example: If we assume a perfect codivergence, that is, T_{H} and T_{P} are identical (for e.g., [Huelsenbeck et. al., 2000]), the space of cophylogenetic trees is

$$
\begin{gathered}
S=\left\{\left(D_{H}, D_{P}\right): D_{H}\right. \text { is a tree metric for } \\
\left.T_{H} \text { and } D_{P} \text { is a tree metric for } T_{P} \text { such that } T_{H}=T_{P}\right\}
\end{gathered}
$$

The space of k-interval cospeciation

In evolution a speciation in host is likely to be followed by a reactionary speciation in parasite, and often vice versa. Combinatorially, this assumption can be made explicit by assuming that for each pair of host species A, B, and corresponding parasite species a, b, the number of edges between A, B is within k of the number of edges between a, b. We say such a cophylogeny satisfies k-interval cospeciation.

Proposition [Huggins and Y., 2008]
Under the 1-interval cospeciation with the given host tree T_{H} in taxa $\{1,2, \cdots, n\}$, if a tree T_{P} in taxa $\left\{1^{\prime}, 2^{\prime}, \cdots, n^{\prime}\right\}$ contains a quartet $\left[i_{1}^{\prime}, i_{3}^{\prime} ; i_{2}^{\prime}, i_{4}^{\prime}\right]$ or $\left[i_{1}^{\prime}, i_{4}^{\prime} ; i_{2}^{\prime}, i_{3}^{\prime}\right]$, and if the corresponding quartet in T_{H} generated by their hosts $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is $\left[i_{1}, i_{2} ; i_{3}, i_{4}\right]$, then T_{P} cannot be the parasite tree for T_{H}.

Example

Figure 2: A parasite fails to speciate and then follows after host's speciation. These events are described with notation in [Pages, 2003].

Example

Example: $k=1$ and $n=4$

Figure 3: Host tree.

Ruriko Yoshida

Example...

There are 5 possible parasite tree topologies.

10,000 yen problems

- Given a host tree T_{H}, which tree topologies are possible for parasite tree, assuming k-interval cospeciation? How many parasite trees are possible?
- Are there interesting cophylogenies, such as k-interval cospeciation, for which the space of cophylogenetic trees admits a linear characterization analogous to the Four Point Condition?
- Given the host tree T_{H} and cophylogeny, for each parasite tree topology, how many ways to get the parasite tree topology with the host tree?
- Given the host tree T_{H}, consider the ideal of invariants $I_{T_{P}}$ for each $T_{P} \in S_{T_{H}}$. Is there a nice characterization or algorithm to compute invariants in the intersection ideal $\cap I_{T_{P}}$?

Advertisement

Statistics postdoc position

We are looking for a new PhD in mathematics, statistics, or related field for a statistics Postdoc position in phylogenomics who is interested in algebra, combinatorics, statistics, and biology. Part of the postdoctoral work will focus on developing theory for analyzing co-divergence/co-evolution between genes or between hosts and their parasites.

For more details, please see
http://polytopes.net/research/postdoc.php
Mid-program on Molecular evolution and phylogenetic trees organized by Erick Matson, Peter Huggins, and Y. will be on April 2nd and 3rd.

Thank you....

http://arxiv.org/abs/0809.1908

