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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of
organisms.
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Why we care?

• We can analyze changes that have occurred in evolution of different
species.

• Phylogenetic relations among different species help predict which species
might have similar functions.

• We can predict changes occurring in rapid changing species, such as HIV
virus.
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Constructing trees from sequence data

“Ten years ago most biologists would have agreed that all organisms evolved
from a single ancestral cell that lived 3.5 billion or more years ago. More
recent results, however, indicate that this family tree of life is far more
complicated than was believed and may not have had a single root at all.”
(W. Ford Doolittle, (June 2000) Scientific American).

Since the proliferation of Darwinian evolutionary biology, many scientists
have sought a coherent explanation from the evolution of life and have tried
to reconstruct phylogenetic trees.
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Methods to reconstruct a phylogenetic tree from DNA sequences include:

• The maximum likelihood estimation (MLE) methods: They describe
evolution in terms of a discrete-state continuous-time Markov process.
The substitution rate matrix can be estimated using the expectation
maximization (EM) algorithm. (for eg. Dempster, Laird, and Rubin
(1977), Felsenstein (1981)).

• The Minimum Evolution (ME) method: This is a distance based
method and weighted Least Square method (the principle of Least
Squares is a general method for estimating unknown parameters values
so that error is minimized). It finds a closest additive metric from
the given non-additive distance matrix with the smallest branch lengths
(more biologically makes sense).
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However

The MLE methods: An exhaustive search for the ML phylogenetic tree is
computationally prohibitive for large data sets.

The ME method: This is an NP hard algorithm in terms of the number
of taxa (Farach, Kannan, Warnow (1996), Rzhetsky and Nei (1993)).

Estimation: To solve the time complexity, we estimate the closest additive
tree with smallest branch lengths.

Neighbor-joining (NJ) method: This is the most popular distance based
method which computes a tree from all pair-wise distances obtained easily.
It combinatorially estimates the ME tree (it is a greedy algorithm to find
the ME tree) (Saito and Nei (1987), Studier and Keppler (1988)).
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However again....

The NJ phylogenetic tree for large data sets loses so much sequence
information and we do not know how well it performs with pairwise distances
that are not tree metrics, especially when all pairwise distances are estimated
via the MLE.

Goal:

• Analyze the behavior of the Neighbor Joining algorithm on five taxa.

• Using polyhedral geometry, partition the sample (data) space for
estimation of a tree topology with five taxa into subspaces, within
each of which the Neighbor Joining algorithm returns the same tree
topology.
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The NJ method
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Distance Matrix

A distance matrix for a tree T is a matrix D whose entry Dij stands for
the mutation distance between i and j.
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Distance Matrix

1 2 3 4 5 6
1 0 6 8 9 12 11
2 6 0 6 7 10 9
3 8 6 0 3 6 5
4 9 7 3 0 5 4
5 12 10 6 5 0 5
6 11 9 5 4 5 0

Table 1: Distance matrix D for the example.
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Definitions
Def. A distance matrix D is a metric iff D satisfies:

• Symmetric: Dij = Dji and Dii = 0.

• Triangle Inequality: Dik + Djk ≥ Dij.

Def. D is an additive metric iff there exists a tree T s.t.

• Every edge has a positive weight and every leaf is labeled by a distinct
species in the given set.

• For every pair of i, j, Dij = the sum of the edge weights along the path
from i to j.

Also we call such T an additive tree.
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Neighbor Joining method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Thm. (Q-criterion) [Saitou-Nei, 1987 and Studier-Keppler, 1988]

Let Q ∈ R
n×n such that Qij = Dij − (ri + rj)/(n − 2), where ri :=

∑n

k=1 Dik. {i∗, j∗} is a cherry in T if Qi∗j∗ is a minimum for all i and j.

Neighbor Joining Method:

Input. A tree matric D. Output. An additive tree T .
Idea. Initialize a star-like tree. Then find a cherry {i, j} and compute
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.
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Neighbor Joining Method
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The Q-criterion

The resulting matrix is again symmetric, and we can see it as a vector of
dimension m =

(

n
2

)

just like the input data. Moreover, the Q-criterion is
obtained from the input data by a linear transformation:

q = A(n)d,

where d is a vector representation of D, q is a vector representation of
Q,and the entries of the matrix A(n) are given by

A
(n)
ij = A

(n)
ab,cd =







n − 4 if i = j,
−1 if i 6= j and {a, b} ∩ {c, d} 6= ∅,
0 else,

where a > b is the row/column-index equivalent to i and likewise for c > d
and j.
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Example

For n = 4 we have

A(4) =

















0 −1 −1 −1 −1 0
−1 0 −1 −1 0 −1
−1 −1 0 0 −1 −1
−1 −1 0 0 −1 −1
−1 0 −1 −1 0 −1
0 −1 −1 −1 −1 0

















.

The Q-criterion:

find smallest qi for i = 1, · · · ,m such that q = A(4)d.
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Reducing the number of taxa

Suppose out of our n taxa {1, . . . , n}, the first cherry to be picked is the
(

n
2

)

th cherry {n − 1, n}, which we view as the new node number n − 1.

The reduced pairwise distance matrix is one row and one column shorter
than the original one. Explicitly,

d′
i =

{

di for 1 ≤ i ≤
(

n−2
2

)

1
2(di + di+(n−2) − dm−1) for

(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)
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We see that the reduced distance matrix depends linearly on the original
one:

d′ = Rd,

with R = (rij) ∈ R
(m−n+1)×m, where

rij =























1 for 1 ≤ i = j ≤
(

n−2
2

)

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i + n − 1

−1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = m
0 else

The process of picking cherries is repeated until there are only three taxa
left, which are then joined to a single new node.
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Shiftting Lemma

Note: There is an n-dimensional linear subspace of R
m which does not

affect the outcome of NJ (Mihaescu et al, 2006). For a node a we define
its shift vector sa by

(sa)b,c :=

{

1 if a ∈ {b, c}

0 else

which represents a tree where the leaf a has distance 1 from all other leaves
and all other distances are zero. The Q-criterion of any such vector is −2
for all pairs, so adding any linear combination of shift vectors to an input
vector does not change the relative values of the Q-criteria.
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The first step in cherry picking

After computing the Q-criterion q, the NJ algorithm proceeds by finding
the minimum entry of it, or, equivalently, the maximum entry of −q. The
set cqi ⊂ R

m of all q-vectors for which qi is minimal is given by

q ∈ cqi ⇔ i = arg max(−ej, Ad)

⇔ i = arg max(−ATej,d)

⇔ i = arg max(−Aej,d) because A is symmetric.

(1)

Therefore the set cdi of all parameter vectors d for which the NJ algorithm
will select cherry i in the first step is the normal cone at −Aei to the
polytope

Pn := conv{−Ae1, . . . ,−Aem}. (2)

The shifting lemma implies that the affine dimension of the polytope Pn is
at most m − n.
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Example for n = 4

In the case of four taxa, this reduces to a triangle with vertices

p0 =
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1
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The normal cones are bounded by three hyperplanes whose normal vectors
are

n01 =

















−1
1
0
0
1
−1

















, n12 =
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0

















, n20 =
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.

For example, the parameter region for which the pair of taxa 1 and 2 is
chosen is defined by

cd0 = {x ∈ R
m | (n01,x) > 0 and (n20,x) < 0} .
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The cone C45,3

Since we can apply a permutation σ ∈ S5 on taxa, without loss of generality,
we suppose that the first cherry to be picked is the cherry with leaves 4 and
5. This is true for all input vectors d which satisfy

(h10,i,d) ≥ 0 for i = 1, . . . ,9,

where the vector
h

(n)
ij := −A(n)(ei − ej).

Then, the set of all input vectors d for which the first picked cherry is 4-5
and the second one is 1-2:

C45,3 :=
{d | (h10,i,d) ≥ 0 for i = 1, . . . , 9, and (r1 − r2,d) ≥ 0, (r1 − r3,d) ≥ 0}

where r1, r2 and r3 are the first three rows of −A(4)R(5).
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The NJ cones

For n = 5, there is only one unlebeled tree and there are 15 lebeled trees.
There are 30 cones in the 5 dimension (i.e. there are two cones per a
lebeled tree).

• They do not form a fan.

• The union of cones C12,3 and C45,3 does not form a convex body (i.e.
the union of two cones for one tree topology does not form a convex
cone).
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The edge radius

Theorem [Atteson, 1999]

Neighbor-joining has l∞ radius 1
2.

This means that if the distance estimates are at most half the minimal edge
length of the tree away from their true value then the NJ algorithm will
reconstruct the correct tree.

Theorem [Eickmeyer and Y, 2007]

Neighbor-joining has l2 radius 1√
3
.
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For n = 6

2
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Figure 1: The two possible topologies for trees with six leaves, with edges
connecting to leaves shrunk to zero.

There are three different classes of cones which cannot be mapped onto
each other by the group action, CI, CII, CIII.
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• Type I: a, b, c, d, e, f → a, b, c, d, (ef) → a, b, (cd), (ef),→ Fig. 1(a)

• Type II: a, b, c, d, e, f → a, b, c, d, (ef) → a, b, (cd), (ef)
→ cd − a − b − ef (like Fig 1(b), but different labels)

• Type III: a, b, c, d, e, f,→ a, b, c, d, (ef) → a, b, c, (d(ef))
→ ab − c − d − ef (exactly as in Fig 1(b))

CI CII CIII

stabilizer 〈(12), (34), (56)〉 〈(12), (56)〉 〈(12), (56)〉
size of stabilizer 8 4 4
number of cones 90 180 180
cones giving same
labeled topology 6 2 2
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Simulation Results
With the Juke Cantor and Kimura 2 parameter models.
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Consider two tree models...

Modeled from Strimmer and von Haeseler.
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We generate 10, 000 replications at the edge length ratio, a/b = 0.03/0.42
for sequences of length 500BP with the Jukes-Cantor and Kimura 2
parameter models via a software evolver from PAML package.

For each set of 5 sequences, we compute first pairwise distances via the
heuristic MLE method using a software fastDNAml. To compute cones, we
used MAPLE and polymake.

We say an input vector (distance matrix) is correctly classified if the
vector locates in one of the cones where the vector representation of the
tree metric (noiseless input) lies. We say an input vector is incorrectly
classified if the vector locates in the complement of the cones where the
vector representation of the tree metric lies.
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For distance matrices which are correctly classified by the NJ algorithm, we
compute the minimum distance to any cone giving a different tree topology.
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Distances of correctly classified vectors from closest misclassified vector
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T2 Kimura

noiseless input

Figure 2: Distances of correctly classified input vectors from the closest
correctly classified vector.
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Mean and variance of the distances of correctly classified vectors from the
nearest misclassified vector.

JC Kimura2
T1 T2 T1 T2

# of cases 3,581 6,441 3,795 4,467
Mean 0.0221 0.0421 0.0415 0.0629
Variance 2.996 · 10−4 9.032 · 10−4 1.034 · 10−3 2.471 · 10−3
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For input vectors to which the NJ algorithm answers with a tree topology
different from the correct tree topology, we compute the distances to the
two cones for which the correct answer is given and take the minimum of
the two. The bigger this distance is, the further we are off.
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Figure 3: Distances of correctly incorrectly classified input vectors from the
closest incorrectly classified vector.
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Mean and variance of the distances of misclassified vectors to the nearest
correctly classified vector.

JC Kimura2
T1 T2 T1 T2

# of cases 6,419 3,559 6,205 5,533
Mean 0.0594 0.0331 0.0951 0.0761
Variance 0.0203 7.39 · 10−4 0.0411 3.481 · 10−3
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Future work

• Study the intersections of cones for n = 5 and n = 6 more closely.

• We have computed the cones for general n.

• Compare the NJ cones with the cones for the ME method (with Lior
Pachter and Peter Huggins).
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Thank you....

The preprint is available at math.CO/0703081.

VT 35


