On the Optimality of

the Neighbor Joining Algorithm

Ruriko Yoshida
Dept. of Statistics University of Kentucky
Joint work with K. Eickmeyer, P. Huggins, and L. Pachter
WWW.ms.uky.edu/~ruriko

Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of organisms.

Why we care?

- We can analyze changes that have occurred in evolution of different species.
- Phylogenetic relations among different species help predict which species might have similar functions.
- We can predict changes occurring in rapidly changing species, such as HIV virus.

Methods to reconstruct a phylogenetic tree from DNA sequences include:

- The maximum likelihood estimation (MLE) methods: These describe evolution in terms of a discrete-state continuous-time Markov process. The substitution rate matrix can be estimated using the expectation maximization (EM) algorithm. (for eg. Dempster, Laird, and Rubin (1977), Felsenstein (1981)).
- The Balanced Minimum Evolution (BME) method: This is a distance based method and weighted Least Square method (the principle of Least Squares is a general method for estimating unknown parameters values so that error is minimized). It finds a closest additive metric from the given non-additive distance matrix with the smallest branch lengths (more biologically makes sense).

However

The MLE methods: An exhaustive search for the ML phylogenetic tree is computationally prohibitive for large data sets.

The BME method: This is an NP hard algorithm in terms of the number of taxa (Farach, Kannan, Warnow (1996), Rzhetsky and Nei (1993), Desper and Gascuel (2004)).

But there is a polynomial time algorithm to estimate the BME tree.
Neighbor-joining (NJ) method: This is the most popular distance based method. It computes a tree from all pair-wise distances obtained easily. (Saito and Nei (1987), Studier and Keppler (1988)).

Fact: The NJ algorithm is a greedy algorithm to find the BME tree (Gascuel and Steel (2006)).

From this point of view, NJ is "optimal" whenever the NJ algorithm outputs the tree which minimizes the BME criterion.

Goal: We want to study the optimality of the NJ algorithm, (i.e., want to study how often the NJ returns the BME tree).

Distance Matrix

A distance matrix for a tree T is a matrix D whose entry $D_{i j}$ stands for the mutation distance between i and j.

Distance Matrix

	1	2	3	4	5	6
1	0	6	8	9	12	11
2	6	0	6	7	10	9
3	8	6	0	3	6	5
4	9	7	3	0	5	4
5	12	10	6	5	0	5
6	11	9	5	4	5	0

Table 1: Distance matrix D for the example.

Definitions

Def. A distance matrix D is a metric iff D satisfies:

- Symmetric: $D_{i j}=D_{j i}$ and $D_{i i}=0$.
- Triangle Inequality: $D_{i k}+D_{j k} \geq D_{i j}$.

Def. D is an additive metric iff there exists a tree T s.t.

- Every edge has a positive weight and every leaf is labeled by a distinct species in the given set.
- For every pair of $i, j, D_{i j}=$ the sum of the edge weights along the path from i to j.

Also we call such T an additive tree.

Neighbor Joining method

Def. We call a pair of two distinct leaves $\{i, j\}$ a cherry if there is exactly one intermediate node on the unique path between i and j.

Thm. (Q-criterion) [Saitou-Nei, 1987 and Studier-Keppler, 1988]
Let $Q \in \mathbb{R}^{n \times n}$ such that $Q_{i j}=(n-2) D_{i j}-\left(r_{i}+r_{j}\right)$, where $r_{i}:=\sum_{k=1}^{n} D_{i k}$. $\left\{i^{*}, j^{*}\right\}$ is a cherry in T if $Q_{i^{*} j^{*}}$ is a minimum for all $i \neq j$.

Neighbor Joining Method:
Input. A tree matric D. Output. An additive tree T.
Idea. Initialize a star-like tree. Then find a cherry $\{i, j\}$ and compute branch length from the interior node x to i and from x to j. Repeat this process recursively until we find all cherries.

Neighbor Joining Method

The NJ is consistent, i.e., it returns the additive tree if the input distance matrix is tree metric.

However, we usually estimate all pairwise distances via MLE. Usually these distance matrices are not tree metric.

The NJ returns a tree topology which induces a tree metric that is hopefully close to the input.

Question: For which distance matrices will the NJ return a particular tree topology?

We look at the algorithm closely.....

Q-criterion

Go back to the previous example....

$Q=$| 0 | -20 | -16 | -15 | -16 | -11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -20 | 0 | -14 | -13 | -14 | -9 |
| -16 | -14 | 0 | -9 | -10 | -5 |
| -15 | -13 | -9 | 0 | -9 | -4 |
| -16 | -14 | -10 | -9 | 0 | -5 |
| -11 | -9 | -5 | -4 | -5 | 0 |

The Q-criterion

For $n=4$ by symmetry we have

$$
\begin{gathered}
Q_{12}=-D_{13}-D_{14}-D_{23}-D_{24} \\
Q_{13}=-D_{12}-D_{14}-D_{23}-D_{34} \\
Q_{23}=-D_{12}-D_{13}-D_{24}-D_{34} \\
Q_{14}=-D_{12}-D_{13}-D_{24}-D_{34} \\
Q_{24}=-D_{12}-D_{14}-D_{23}-D_{34} \\
Q_{34}=-D_{13}-D_{14}-D_{23}-D_{24} \\
\left(\begin{array}{l}
Q_{12} \\
Q_{13} \\
Q_{23} \\
Q_{14} \\
Q_{24} \\
Q_{34}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & -1 & -1 & -1 & -1 & 0 \\
-1 & 0 & -1 & -1 & 0 & -1 \\
-1 & -1 & 0 & 0 & -1 & -1 \\
-1 & -1 & 0 & 0 & -1 & -1 \\
-1 & 0 & -1 & -1 & 0 & -1 \\
0 & -1 & -1 & -1 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
D_{12} \\
D_{13} \\
D_{23} \\
D_{14} \\
D_{24} \\
D_{34}
\end{array}\right) .
\end{gathered}
$$

In general...

Let $m=\binom{n}{2}$. Let $\mathbf{d} \in \mathbb{R}^{m}$ be a vector representation of D and $\mathbf{q} \in \mathbb{R}^{m}$ be a vector representation of Q. The Q-criterion is obtained from the input data by a linear transformation:

$$
\mathbf{q}=\mathbf{A}^{(\mathbf{n})} \mathbf{d}
$$

where the entries of the matrix $A^{(n)}$ are given by

$$
\mathbf{A}_{\mathbf{a b}}^{(\mathbf{n})}=\mathbf{A}_{\mathbf{i j}, \mathbf{k l}}^{(\mathbf{n})}= \begin{cases}n-4 & \text { if } a=b, \\ -1 & \text { if } a \neq b \text { and }\{i, j\} \cap\{k, l\} \neq \emptyset, \\ 0 & \text { else },\end{cases}
$$

The Q-criterion:

$$
\text { find smallest } \mathbf{q}_{\mathbf{a}} \text { for } \mathbf{a}=\mathbf{1}, \cdots, \mathbf{m} \text { such that } \mathbf{q}=\mathbf{A}^{(\mathbf{n})} \mathbf{d} .
$$

The first step in cherry picking

Note that the Q-criterion is a linear programming problem:

$$
\min \mathbf{d} \cdot \mathrm{x} \text { such that } \mathrm{x} \in \operatorname{conv}\left\{\mathbf{A e}_{1}, \ldots, \mathbf{A} \mathbf{e}_{\mathrm{m}}\right\} .
$$

Therefore the set $c d_{i}$ of all parameter vectors \mathbf{d} for which the NJ algorithm will select cherry i in the first step is the normal cone at $A e_{i}$ to the polytope

$$
\mathbf{P}_{\mathbf{n}}^{\mathbf{n j}}:=\operatorname{conv}\left\{\mathbf{A e}_{1}, \ldots, \mathbf{A} \mathbf{e}_{\mathbf{m}}\right\} .
$$

The shifting lemma implies that the affine dimension of the polytope $P_{n}^{n j}$ is at most $m-n$.

Example for $n=4$

Reducing the number of taxa

Suppose out of our n taxa $\{1, \ldots, n\}$, the first cherry to be picked is the $\binom{n}{2}$ th cherry $\{n-1, n\}$, which we view as the new node number $n-1$.

The reduced pairwise distance matrix is one row and one column shorter than the original one. Explicitly,

$$
\mathbf{d}_{\mathbf{i}}^{\prime}= \begin{cases}d_{i} & \text { for } 1 \leq i \leq\binom{ n-2}{2} \\ \frac{1}{2}\left(d_{i}+d_{i+(n-2)}-d_{m}\right) & \text { for }\binom{n-2}{2}+1 \leq i \leq\binom{ n-1}{2}\end{cases}
$$

Ruriko Yoshida
We see that the reduced distance matrix depends linearly on the original one:

$$
\mathrm{d}^{\prime}=\mathbf{R d},
$$

with $R=\left(r_{i j}\right) \in \mathbb{R}^{(m-n+1) \times m}$, where

$$
r_{i j}= \begin{cases}1 & \text { for } 1 \leq i=j \leq\binom{ n-2}{2} \\ 1 / 2 & \text { for }\binom{n-2}{2}+1 \leq i \leq\binom{ n-1}{2}, j=i \\ 1 / 2 & \text { for }\binom{2}{n-2}+1 \leq i \leq\binom{ 2}{2}, j=i+n-1 \\ -1 / 2 & \text { for }\binom{n-2}{2}+1 \leq i \leq\binom{ n-1}{2}, j=m \\ 0 & \text { else }\end{cases}
$$

The process of picking cherries is repeated until there are only three taxa left, which are then joined to a single new node.

Note: Each tree topology is determined by a polyhedral cone (i.e., we add more constraints to the normal cone at a vertex of $P_{n}^{n j}$). We call these cones NJ cones.

The cone $C_{45,3}$

Since we can apply a permutation $\sigma \in S_{5}$ on taxa, without loss of generality, we suppose that the first cherry to be picked is the cherry with leaves 4 and 5. This is true for all input vectors \mathbf{d} which satisfy

$$
\left(\mathbf{h}_{10, i}, \mathbf{d}\right) \geq \mathbf{0} \text { for } \mathbf{i}=\mathbf{1}, \ldots, \mathbf{9}
$$

where the vector

$$
\mathbf{h}_{\mathrm{ij}}^{(\mathbf{n})}:=-\mathbf{A}^{(\mathbf{n})}\left(\mathbf{e}_{\mathbf{i}}-\mathbf{e}_{\mathrm{j}}\right) .
$$

Then, the set of all input vectors \mathbf{d} for which the first picked cherry is 4-5 and the second one is $1-2$:

$$
\begin{aligned}
& C_{45,3}:= \\
& \left\{\mathbf{d} \mid\left(\mathbf{h}_{10, i}, \mathbf{d}\right) \geq 0 \text { for } i=1, \ldots, 9, \text { and }\left(\mathbf{r}_{1}-\mathbf{r}_{2}, \mathbf{d}\right) \geq 0,\left(\mathbf{r}_{1}-\mathbf{r}_{3}, \mathbf{d}\right) \geq 0\right\}
\end{aligned}
$$

where $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3} are the first three rows of $-A^{(4)} R^{(5)}$.

The NJ cones

For $n=5$, there is only one unlabeled tree and there are 15 labeled trees. There are 30 cones in the 5 -dimension (i.e. there are two cones per a lebeled tree).

- They do not form a fan.
- The union of cones $C_{12,3}$ and $C_{45,3}$ does not form a convex body (i.e. the union of two cones for one tree topology does not form a convex cone).

Example

$$
\begin{aligned}
D_{1} & =\left(\begin{array}{ccccc}
0 & 0.056244 & 0.168744 & 0.506257 & 0.056256 \\
0.056244 & 0 & 0.168755 & 0.056256 & 0.506245 \\
0.168744 & 0.168755 & 0 & 0.056244 & 0.056256 \\
0.506257 & 0.056256 & 0.056244 & 0 & 0.168744 \\
0.056256 & 0.506245 & 0.056256 & 0.168744 & 0
\end{array}\right) \text { and } \\
D_{2} & =\left(\begin{array}{ccccc}
0 & 0.168694 & 0.056194 & 0.506306 & 0.112556 \\
0.168694 & 0 & 0.056307 & 0.056307 & 0.562445 \\
0.056194 & 0.056307 & 0 & 0.168694 & 0.225056 \\
0.506306 & 0.056307 & 0.168694 & 0 & 0.112444 \\
0.112556 & 0.562445 & 0.225056 & 0.112444 & 0
\end{array}\right)
\end{aligned}
$$

NJ algorithm returns the tree in Figure 1 from D_{1} and D_{2}.

Figure 1: A tree with five leaves.
However, the NJ returns a different tree topology with $\left(D_{1}+D_{2}\right) / 2$.

Balanced Minimum Evolution

The BME is also a distance based method.
This is a weighted LS method to find the closest tree metric such that the total branch lengths of the tree is the smallest.

It is based on Pauplin's formula, $\Delta_{D}(\tau)$, which estimates the total length of a tree, based on: [Pauplin 2000 J Mol Evol 51]
(1) its topology τ,
(2) an estimated distance matrix $D=\left(D_{i j}\right)$.

The BME is to find τ such that

$$
\min _{\tau_{t}, t=1, \cdots(2 n-5)!!} \Delta_{D}\left(\tau_{t}\right)
$$

Pauplin's formula

Pauplin's formula is defined as:

$$
\Delta_{D}(\tau)=\sum_{i<j} W_{i j}(\tau) D_{i j}
$$

where

$$
\left.W_{i j}(\tau)=(2)^{(1-\#} \text { of branches between } i \text { and } j\right)
$$

for a particular tree topology τ.

Example

For the tree topology above, we have

$$
W(\tau)=(1 / 2,1 / 4,1 / 4,1 / 8,1 / 8,1 / 4,1 / 8,1 / 8,1 / 4,1 / 2)
$$

Note that Pauplin's formula can be seen as a linear programming such that

$$
\min _{x \in P_{n}^{M E}} \mathbf{d} \cdot x
$$

such that

$$
P_{n}^{M E}=\operatorname{conv}\left\{W_{\tau_{1}}, \cdots, W_{\tau_{(2 n-5)!!}}\right\}
$$

We call $P_{n}^{M E}$ a BME polytope.
Thus, the set of all \mathbf{d} such that the topology τ_{t} is minimal is the normal cone at a vertex $W_{\tau_{t}}$. We call this cone BME cone for a topology τ_{t}.

Combinatorics of the BME polytopes

For up to $n=7$ taxa, we computed BME polytopes and studied their structure.

n	dimension of BME polytope	f-vector
4	2	$(3,3)$
5	5	$(15,105,250,210,52)$
6	9	$(105,5460, ?, ?, ?, 90262)$
7	14	$(945,445410, ?, ?, ?, ?, ?)$

For $n=5,6$, the number of edges is $\binom{n}{2}$, so all pairs of bifurcating tree topologies τ_{1}, τ_{2} on $n \leq 6$ taxa can be cooptimal for BME, which we found surprising.

But for $n=7$, there is one combinatorial type of non-edge.

Edges and non-edges of the BME polytope

- We still do not understand which pairs of trees will form edges on the BME polytope.
- If we did understand the edges, then we might be able to devise a competitive alternative to FastME that improves trees by walking along edges on the BME polytope, rather than performing nearest-neighbor interchange (NNI) moves.
- Edge-walking is called the simplex algorithm in linear programming, and it works very well in practice.

Balanced minimum evolution cones

- For each bifurcating tree topology τ, the BME cone of τ is the set of all choices of pairwise distances $D=\left(d_{i j}\right)$ for which τ minimizes the dot-product $D \cdot W_{\tau}$.
- The edges of the BME polytope emanating from the vertex W_{τ} determine the facets (flat sides) of the BME cone of τ. The facets of the BME polytope that contain W_{τ} determine the extreme rays of the BME cone of τ. (This is a perfect example of duality.)
- BME cones are convex.
- Thus the BME method (unlike neighbor joining) is convex: If the BME method outputs tree topology τ for two inputs D, D^{\prime}, then BME will also output τ on the input $\left(D+D^{\prime}\right) / 2$.

BME cones and NJ cones

- For each tree topology τ, we take the ratio the NJ cones and the BME cone by comparing the sperical volumes of intersections between the NJ cones and the unit sphare and between the BME cone and the unit sphare.
- A key requirement is the measurement of volumes of spherical polytopes in high dimension, which we obtain using a combination of traditional Monte Carlo methods and polyhedral algorithms.
- Our analysis reveals new insights into the performance of the NJ and BME algorithms for phylogenetic reconstruction.

Comparing NJ and BME cones

- As a supplement to our forthcoming paper, we are creating a catalog of frequencies of all possible types of pairs of NJ and BME trees, for up to 8 (or perhaps even more) taxa.
- Quick summary stats: Overall agreement between NJ and BME topologies is $100 \%, 98 \%, 90 \%, 80 \%, 65 \%$ for $n=4,5,6,7,8$ taxa.
- For $n \geq 7$ taxa, the ability of NJ to recover a BME caterpillar tree decreases much more quickly than for other BME tree topologies.

Future work

- We conjecture that the caterpillar tree is the most difficult BME tree for NJ to reproduce, as the number of taxa grows. Is this true? Why?
- In general, how does NJ's performance as a greedy BME heuristic depending on the topology of the BME tree?
- Rather than compare NJ and BME under a Gaussian distribution on $R^{\binom{n}{2}}$, one could use other distributions - namely $D=D_{0}+\epsilon$, where D_{0} are the true distances, and ϵ is either Gaussian or distributed according to the WLS in BME. This might still lead to some tractable and interesting computational geometry.
- Is there a combinatorial criterion (or at least sufficient conditions) for when two tree topologies form an edge on the BME polytope? Can this be used as a better way to move through tree space?

Thank you....

