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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of
organisms.
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Why we care?

• We can analyze changes that have occurred in evolution of different
species.

• Phylogenetic relations among different species help predict which species
might have similar functions.

• We can predict changes occurring in rapidly changing species, such as
HIV virus.
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Methods to reconstruct a phylogenetic tree from DNA sequences include:

• The maximum likelihood estimation (MLE) methods: These
describe evolution in terms of a discrete-state continuous-time Markov
process. The substitution rate matrix can be estimated using the
expectation maximization (EM) algorithm. (for eg. Dempster, Laird,
and Rubin (1977), Felsenstein (1981)).

• The Balanced Minimum Evolution (BME) method: This is a
distance based method and weighted Least Square method (the
principle of Least Squares is a general method for estimating unknown
parameters values so that error is minimized). It finds a closest additive
metric from the given non-additive distance matrix with the smallest
branch lengths (more biologically makes sense).
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However

The MLE methods: An exhaustive search for the ML phylogenetic tree is
computationally prohibitive for large data sets.

The BME method: This is an NP hard algorithm in terms of the number
of taxa (Farach, Kannan, Warnow (1996), Rzhetsky and Nei (1993), Desper
and Gascuel (2004)).

But there is a polynomial time algorithm to estimate the BME tree.

Neighbor-joining (NJ) method: This is the most popular distance based
method. It computes a tree from all pair-wise distances obtained easily.
(Saito and Nei (1987), Studier and Keppler (1988)).
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Fact: The NJ algorithm is a greedy algorithm to find the BME tree (Gascuel
and Steel (2006)).

From this point of view, NJ is “optimal” whenever the NJ algorithm outputs
the tree which minimizes the BME criterion.

Goal: We want to study the optimality of the NJ algorithm, (i.e., want to
study how often the NJ returns the BME tree).
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Distance Matrix

A distance matrix for a tree T is a matrix D whose entry Dij stands for
the mutation distance between i and j.

a r b

1

2

3
4

5
6

4

2

3

1

1

1

1

3

2

Toyohashi 7



Ruriko Yoshida

Distance Matrix

1 2 3 4 5 6
1 0 6 8 9 12 11
2 6 0 6 7 10 9
3 8 6 0 3 6 5
4 9 7 3 0 5 4
5 12 10 6 5 0 5
6 11 9 5 4 5 0

Table 1: Distance matrix D for the example.
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Definitions
Def. A distance matrix D is a metric iff D satisfies:

• Symmetric: Dij = Dji and Dii = 0.

• Triangle Inequality: Dik + Djk ≥ Dij.

Def. D is an additive metric iff there exists a tree T s.t.

• Every edge has a positive weight and every leaf is labeled by a distinct
species in the given set.

• For every pair of i, j, Dij = the sum of the edge weights along the path
from i to j.

Also we call such T an additive tree.
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Neighbor Joining method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Thm. (Q-criterion) [Saitou-Nei, 1987 and Studier-Keppler, 1988]

Let Q ∈ R
n×n such that Qij = (n−2)Dij−(ri+rj), where ri :=

∑n

k=1 Dik.
{i∗, j∗} is a cherry in T if Qi∗j∗ is a minimum for all i 6= j.

Neighbor Joining Method:

Input. A tree matric D. Output. An additive tree T .
Idea. Initialize a star-like tree. Then find a cherry {i, j} and compute
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.
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Neighbor Joining Method
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The NJ is consistent, i.e., it returns the additive tree if the input distance
matrix is tree metric.

However, we usually estimate all pairwise distances via MLE. Usually these
distance matrices are not tree metric.

The NJ returns a tree topology which induces a tree metric that is hopefully
close to the input.

Question: For which distance matrices will the NJ return a particular tree
topology?

We look at the algorithm closely.....
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Q-criterion

Go back to the previous example....

Q =

0 −20 −16 −15 −16 −11
−20 0 −14 −13 −14 −9
−16 −14 0 −9 −10 −5
−15 −13 −9 0 −9 −4
−16 −14 −10 −9 0 −5
−11 −9 −5 −4 −5 0
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The Q-criterion
For n = 4 by symmetry we have

Q12 = −D13 − D14 − D23 − D24

Q13 = −D12 − D14 − D23 − D34

Q23 = −D12 − D13 − D24 − D34

Q14 = −D12 − D13 − D24 − D34

Q24 = −D12 − D14 − D23 − D34

Q34 = −D13 − D14 − D23 − D24
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0 −1 −1 −1 −1 0
−1 0 −1 −1 0 −1
−1 −1 0 0 −1 −1
−1 −1 0 0 −1 −1
−1 0 −1 −1 0 −1
0 −1 −1 −1 −1 0
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In general...
Let m =

(

n

2

)

. Let d ∈ R
m be a vector representation of D and q ∈ R

m

be a vector representation of Q. The Q-criterion is obtained from the input
data by a linear transformation:

q = A(n)d,

where the entries of the matrix A(n) are given by

A
(n)
ab = A

(n)
ij,kl =







n − 4 if a = b,
−1 if a 6= b and {i, j} ∩ {k, l} 6= ∅,
0 else,

.

The Q-criterion:

find smallest qa for a = 1, · · · ,m such that q = A(n)d.
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The first step in cherry picking

Note that the Q-criterion is a linear programming problem:

mind · x such that x ∈ conv{Ae1, . . . ,Aem}.

Therefore the set cdi of all parameter vectors d for which the NJ algorithm
will select cherry i in the first step is the normal cone at Aei to the polytope

Pnj
n := conv{Ae1, . . . ,Aem}.

The shifting lemma implies that the affine dimension of the polytope Pnj
n

is at most m − n.
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Example for n = 4

1 2

3 4

1 3

2 4

2 3

1 4

(0, -1, 1, 1, -1, 0)

(-1, 1, 0, 0, 1, -1)

(1, 0, -1, -1, 0, 1)
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Reducing the number of taxa

Suppose out of our n taxa {1, . . . , n}, the first cherry to be picked is the
(

n

2

)

th cherry {n − 1, n}, which we view as the new node number n − 1.

The reduced pairwise distance matrix is one row and one column shorter
than the original one. Explicitly,

d′
i =

{

di for 1 ≤ i ≤
(

n−2
2

)

1
2(di + di+(n−2) − dm) for

(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)
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We see that the reduced distance matrix depends linearly on the original
one:

d′ = Rd,

with R = (rij) ∈ R
(m−n+1)×m, where

rij =























1 for 1 ≤ i = j ≤
(

n−2
2

)

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i + n − 1

−1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = m
0 else

The process of picking cherries is repeated until there are only three taxa
left, which are then joined to a single new node.

Note: Each tree topology is determined by a polyhedral cone (i.e., we add
more constraints to the normal cone at a vertex of Pnj

n ). We call these
cones NJ cones.
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The cone C45,3

Since we can apply a permutation σ ∈ S5 on taxa, without loss of generality,
we suppose that the first cherry to be picked is the cherry with leaves 4 and
5. This is true for all input vectors d which satisfy

(h10,i,d) ≥ 0 for i = 1, . . . ,9,

where the vector
h

(n)
ij := −A(n)(ei − ej).

Then, the set of all input vectors d for which the first picked cherry is 4-5
and the second one is 1-2:

C45,3 :=
{d | (h10,i,d) ≥ 0 for i = 1, . . . , 9, and (r1 − r2,d) ≥ 0, (r1 − r3,d) ≥ 0}

where r1, r2 and r3 are the first three rows of −A(4)R(5).
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The NJ cones

For n = 5, there is only one unlabeled tree and there are 15 labeled trees.
There are 30 cones in the 5-dimension (i.e. there are two cones per a
lebeled tree).

• They do not form a fan.

• The union of cones C12,3 and C45,3 does not form a convex body (i.e.
the union of two cones for one tree topology does not form a convex
cone).

Toyohashi 21



Ruriko Yoshida

Example

D1 =













0 0.056244 0.168744 0.506257 0.056256
0.056244 0 0.168755 0.056256 0.506245
0.168744 0.168755 0 0.056244 0.056256
0.506257 0.056256 0.056244 0 0.168744
0.056256 0.506245 0.056256 0.168744 0













and

D2 =













0 0.168694 0.056194 0.506306 0.112556
0.168694 0 0.056307 0.056307 0.562445
0.056194 0.056307 0 0.168694 0.225056
0.506306 0.056307 0.168694 0 0.112444
0.112556 0.562445 0.225056 0.112444 0













.
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NJ algorithm returns the tree in Figure 1 from D1 and D2.

Figure 1: A tree with five leaves.

However, the NJ returns a different tree topology with (D1 + D2)/2.
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Balanced Minimum Evolution

The BME is also a distance based method.

This is a weighted LS method to find the closest tree metric such that the
total branch lengths of the tree is the smallest.

It is based on Pauplin’s formula, ∆D(τ), which estimates the total length
of a tree, based on: [Pauplin 2000 J Mol Evol 51]

(1) its topology τ ,

(2) an estimated distance matrix D = (Dij).

The BME is to find τ such that

min
τt, t=1,···(2n−5)!!

∆D(τt).
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Pauplin’s formula

Pauplin’s formula is defined as:

∆D(τ) =
∑

i<j

Wij(τ)Dij,

where
Wij(τ) = (2)

(1−# of branches between i and j)

for a particular tree topology τ .
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Example

For the tree topology above, we have

W (τ) = (1/2, 1/4, 1/4, 1/8, 1/8, 1/4, 1/8, 1/8, 1/4, 1/2).
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Note that Pauplin’s formula can be seen as a linear programming such that

min
x∈P ME

n

d · x

such that
PME

n = conv{Wτ1, · · · ,Wτ(2n−5)!!
}.

We call PME
n a BME polytope.

Thus, the set of all d such that the topology τt is minimal is the normal
cone at a vertex Wτt

. We call this cone BME cone for a topology τt.
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Combinatorics of the BME polytopes

For up to n = 7 taxa, we computed BME polytopes and studied their
structure.

n dimension of BME polytope f-vector
4 2 (3,3)
5 5 (15, 105, 250, 210, 52)
6 9 (105, 5460, ?, ?, ?, 90262)
7 14 (945, 445410, ?, ?, ?, ?, ?)

For n = 5, 6, the number of edges is
(

n

2

)

, so all pairs of bifurcating tree
topologies τ1, τ2 on n ≤ 6 taxa can be cooptimal for BME, which we found
surprising.

But for n = 7, there is one combinatorial type of non-edge.
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Edges and non-edges of the BME polytope

• We still do not understand which pairs of trees will form edges on the
BME polytope.

• If we did understand the edges, then we might be able to devise a
competitive alternative to FastME that improves trees by walking along
edges on the BME polytope, rather than performing nearest-neighbor
interchange (NNI) moves.

• Edge-walking is called the simplex algorithm in linear programming,
and it works very well in practice.
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Balanced minimum evolution cones

• For each bifurcating tree topology τ , the BME cone of τ is the set of
all choices of pairwise distances D = (dij) for which τ minimizes the
dot-product D · Wτ .

• The edges of the BME polytope emanating from the vertex Wτ determine
the facets (flat sides) of the BME cone of τ . The facets of the BME
polytope that contain Wτ determine the extreme rays of the BME cone
of τ . (This is a perfect example of duality.)

• BME cones are convex.

• Thus the BME method (unlike neighbor joining) is convex: If the
BME method outputs tree topology τ for two inputs D,D′, then BME
will also output τ on the input (D + D′)/2.
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BME cones and NJ cones

• For each tree topology τ , we take the ratio the NJ cones and the BME
cone by comparing the sperical volumes of intersections between the NJ
cones and the unit sphare and between the BME cone and the unit
sphare.

• A key requirement is the measurement of volumes of spherical polytopes
in high dimension, which we obtain using a combination of traditional
Monte Carlo methods and polyhedral algorithms.

• Our analysis reveals new insights into the performance of the NJ and
BME algorithms for phylogenetic reconstruction.
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Comparing NJ and BME cones

• As a supplement to our forthcoming paper, we are creating a catalog of
frequencies of all possible types of pairs of NJ and BME trees, for up to
8 (or perhaps even more) taxa.

• Quick summary stats: Overall agreement between NJ and BME
topologies is
100%, 98%, 90%, 80%, 65% for n = 4, 5, 6, 7, 8 taxa.

• For n ≥ 7 taxa, the ability of NJ to recover a BME caterpillar tree
decreases much more quickly than for other BME tree topologies.
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Future work

• We conjecture that the caterpillar tree is the most difficult BME tree for
NJ to reproduce, as the number of taxa grows. Is this true? Why?

• In general, how does NJ’s performance as a greedy BME heuristic
depending on the topology of the BME tree?

• Rather than compare NJ and BME under a Gaussian distribution on

R(n
2), one could use other distributions — namely D = D0+ǫ, where D0

are the true distances, and ǫ is either Gaussian or distributed according to
the WLS in BME. This might still lead to some tractable and interesting
computational geometry.

• Is there a combinatorial criterion (or at least sufficient conditions) for
when two tree topologies form an edge on the BME polytope? Can this
be used as a better way to move through tree space?
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Thank you....

Toyohashi 34


