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Getting started...
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One more puzzle....

What is the optimal value and an optimal solution for the following problem?

Maximize

213x1−1928x2−11111x3−2345x4+9123x5−12834x6−123x7+122331x8

subject to

11948x1+23330x2+30635x3+44197x4+92754x5+123389x6+136951x7+
140745x8 = 14215207,

xi ∈ Z+ for i = 1, 2, . . . , 8.

Note: Branch-and-bound method (CPLEX v.6.6) failed to solve this problem.
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How to solve

Let P = {x ∈ R
d|Ax = a, Bx ≤ b}, where A, B are integral matrices and

a, b are integral vectors.

Tool: The multivariate generating function

f(P, z) =
∑

α∈P∩Zd

zα,

where zα = z
α1
1 z

α2
2 . . . z

αd
d .

This is an infinite formal power series if P is not bounded, but if P is a
polytope it is a polynomial.
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Example for f(P, z)

Let V1 = (0, 0), V2 = (5, 0), V3 = (4, 2), and V4 = (0, 2).
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Each vertex is represented by the following monomials:

For V1 = (0, 0), zV1 = z0
1z

0
2 = 1.

For V2 = (5, 0), zV2 = z5
1z

0
2 = z5

1.

For V3 = (4, 2), zV3 = z4
1z

2
2.

For V4 = (0, 2), zV4 = z0
1z

2
2 = z2

2.

In this manner, we have f(P, z) as the following:

f(P, z) = z1
5 + z1

4z2 + z1
4 + z1

4z2
2 + z2z1

3 + z1
3 + z1

3z2
2 + z2z1

2 + z1
2 +

z1
2z2

2 + z1z2 + z1 + z1z2
2 + z2

2 + z2 + 1.
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However...

The multivariate generating function f(P, z) has exponentially many
monomials even in fixed the dimension.

Question: How can we encode f(P, z) in polynomial size if we fix the
dimension?

Answer: We can encode f(P, z) as a short sum of rational functions.
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Theorem: [Barvinok (1993)]

Assume that we fix the dimension d and suppose we have a rational convex
polyhedron P = {u ∈ R

d : Au ≤ b } , where A ∈ Z
m×d and b ∈ Z

m.
Then there exists a polynomial time algorithm to compute f(P, z) in the
following form of:

f(P, z) =
∑

i∈I

±
zui

(1 − zv1i)(1 − zv2i) . . . (1 − zvdi)

where ui, v1i, . . . vdi ∈ Z
d for all i ∈ I.
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From the previous example

V

V

1

4

V2

V
3

f(P, z) = z1
5 + z1

4z2 + z1
4 + z1

4z2
2 + z2z1

3 + z1
3 + z1

3z2
2 + z2z1

2 + z1
2 +

z1
2z2

2 + z1z2 + z1 + z1z2
2 + z2

2 + z2 + 1

= 1
(1−z1)(1−z2)

+ z1
5

(1−z1
−1)(1−z2)

+
z2
1

(1−z1)(1−z−1
2 )

+
z5
1

(1−z−1
1 z2)(1−z−1

2 )
+

z1
4z2

2

(1−z2
−1)(1−z1)

−
z4
1z2

2

(1−z−1
1 z2

2)(1−z−1
1 )

.
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LattE

• INPUT: Integral matrices A, B and integral vectors a, b for the polytope
P .

• OUTPUT: f(P, z) written as a short sum of rational functions.

• APPLICATIONS:

(A) Counting Problem,

(B) Integer Programming,

(C) Integer Feasibility Problem,

(D) Computing a universal test set of a given integral matrix A.
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Answer to the puzzle
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316052820930116909459822049052149787748004963058022997262397.
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Answer to the puzzle

Maximize

213x1−1928x2−11111x3−2345x4+9123x5−12834x6−123x7+122331x8

subject to

11948x1+23330x2+30635x3+44197x4+92754x5+123389x6+136951x7+
140745x8 = 14, 215, 207,

xi ∈ Z+ for i = 1, 2, . . . , 8.

The optimal value is 3471390.
An optimal solution is (853, 2, 0, 4, 0, 0, 0, 27).
The number of feasible integer points is 2047107.
CPU Time: about 12 sec.
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Theory behind the implementation

v

P

Theorem[Brion, Lawrence]

Let P be a convex polyhedron and let V (P ) be the vertex set of P . Let
Kv be the tangent cone at v ∈ V (P ). Then

f(P, z) =
∑

v∈V (P )

f(Kv, z).
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If we have a simple cone...
For a simple cone K ⊂ R

d,

f(K, z) =

∑

u∈Π∩Zd zu

(1 − zc1)(1 − zc2) . . . (1 − zcd)

where Π is the half open parallelepiped spanned by the rays of the cone K,
c1, . . . , cd ∈ Z

d.
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Example

In this case, we have d = 2 and c1 = (1, 2), c2 = (4,−1). We have:

f(K, z) =
z4
1z2 + z3

1z2 + z2
1z2 + z1z2 + z4

1 + z3
1 + z2

1 + z1 + 1

(1 − z1z
2
2)(1 − z4

1z
−1
2 )

.
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If a cone K is not simple....

We triangulate the cone into simple cones.
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Fact: If the parallelepiped Π for a simple cone K has only one integral
point u, then

f(K, z) =
zu

∏d

i=1(1 − zci)
.

Goal: Want to decompose K into simple cones whose parallelepipeds Π
have ONLY one integral point.

Definition: A unimodular cone K is a simple cone such that the half open
parallelepiped generated by the rays of K contains only one lattice point
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Barvinok’s cone decomposition

Theorem [Barvinok] Fix the dimension d. Then there exists a polynomial
time algorithm which decomposes a rational polyhedral cone K ⊂ R

d into
unimodular cones Ki with numbers εi ∈ {−1, 1} such that

f(K, z) =
∑

i∈I

εif(Ki, z), |I| < ∞.
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We do this process until all cones become unimodular.

W

W

Step 1

Step 3

W

Step 2

U1

U2

U2

U1

aU1

aU2

a = (det(U1|U2)) d
--1

aU1

aU2
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We have so far...

1. Find the vertices of the given polytope and their defining tangent cones.

2. Triangulate and apply Barvinok’s cone decomposition to each of the
cones.

3. Obtain the signed rational function of each cone and sum them up.

We need to include lower dimensional cones and also apply the inclusion-
exclusion principle, to get the multivariate generating function f(P, z).
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Brion’s polarization trick

Lemma: Let K ⊂ R
d be a cone. If K contains a straight line then

f(K, z) ≡ 0.

By this lemma we can avoid using the inclusion-and-exclusion principle and
save time and memory. The trick is the following:

1. Polarize the tangent cone.

2. Decompose the polar into unimodular cones.

3. Polarize back each of the unimodular cones.

If we do this process, the multivariate function f(K, z) for each lower
dimensional cone K becomes zero.
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Example

d = 2 and K = cone{(1, 0), (1, k)} for some large k ∈ Z.

The dual cone K∗ = cone{(−k, 1), (0, −1)}.

Applying Barvinok’s cone decomposition, we have

f(K∗, z) = f(K∗

1 , z) + f(K∗

2 , z) + f(K∗

3 , z),

where K∗

1 = cone{(−k, 1), (−1, 0)}, K∗

2 = cone{(0, −1), (−1, 0)}, and
K∗

3 = cone{(−1, 0)}.

Applying Brion’s trick, we have

f(K, z) = f(K1, z) + f(K2, z),

where K1 = cone{(0, −1), (1, k)} and K2 = cone{(0, 1), (1, 0)}.
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Outline of the implementation

1. Find the vertices of the given polytope and their defining tangent cones.

2. Compute the polar cone to each of the cones.

3. Triangulate and apply Barvinok’s cone decomposition to each of the
polar cones.

4. Polarize back each of the full dimensional unimodular cones.

5. Obtain the signed rational function of each cone and sum them up.
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Integer Programming

via Short Rational Functions
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Integer programming
Problem: Given A ∈ Z

m×d, b ∈ Z
m, c ∈ Z

d,

max c · x subject to Ax ≤ b, x ∈ Z
d.

There are several algorithms to solve the integer programming problem
using short rational functions, such as:

1. Barvinok’s binary search (BBS) algorithm

2. The digging algorithm

3. The test-set (Gröbner bases, Graver bases, etc) algorithm

Barvinok’s binary search (BBS) algorithm and the digging algorithm are
implemented in LattE.
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Digging algorithm

Problem: Find the optimal value M ∈ Z and an optimal solution x∗ ∈ Zd

for max{c · x : x ∈ P ∩ Z
d}, where P is a rational convex polyhedron.

If we make the substitutions Φ : C
d → C such that Φ(zi) = tci, then we

will have that Φ(zα) = tc·α,

and we will thereby obtain

Φ(f(P, z)) =
∑

α∈P∩Zd

tc·α

= ktM + (lower degree terms).

Note: With the substitutions zi → yit
ci instead, we can obtain an optimal

solution as well.
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Suppose we have a sum of short rational functions for P :

f(P, z) =
∑

i∈I

±
zui

(1 − zv1i)(1 − zv2i) . . . (1 − zvdi)
.

With the monomial substitutions zi → yit
ci, we get:

g(P ; y, t) =
∑

i∈I

±
yuitc·ui

∏d

j=1(1 − yvijtc·vij)
.

We can assume that c · vij < 0. If c · vij > 0, then we use the following
identity:

yv

(1 − yu)
= −

yv−u

(1 − y−u)
.
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We send t to ∞ in the rational function

g(P ; y, t) =
∑

i∈I

±
yuitc·ui

∏d

j=1(1 − yvijtc·vij)
.

and we obtain the following power series:

kyx∗

tM+ (terms whose degree in t is < M).
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Example

maximize 100x+90y subject to x+y ≤ 100, x ≤ 50, x, y ≥ 0, x, y ∈ Z
d.

100

100

50

50

C=(100, 90)

(0,0)

The rational generating function is:

1
(1−x1)(1−x2)

+
x50

1

(1−x−1
1 )(1−x2)

+
x100

2

(1−x−1
2 )(1−x1x−1

2 )
+

x50
1 x50

2

(1−x−1
2 )(1−x−1

1 x2)
.
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Example cont.

We apply the monomial substitution and apply the appropriate algebraic
identities and we get:

t−190

(1−t−100)(1−t−90)
− t4910

(1−t−100)(1−t−90)
− t8990

(1−t−90)(1−t−10)
+ t9500

(1−t−90)(1−t−10)
.

Sending t to ∞, then this rational function approaches the power series

t9500 + (lower degree terms).

Therefore, the optimal value for this problem is 9500.
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IP via Gröbner basis

First we define a term order from a vector c as follows:
For all α, β ∈ Z

d
+, α ≺c β if

• c · α < c · β or

• cα = cβ and α ≺lex β.

For example, suppose c = (1, 0, 2) and if we have (3, 2, 7) and (3, 5, 2) in
R

3, then we have (1, 0, 2) · (3, 2, 7) = 17 and (1, 0, 2) · (3, 5, 2) = 13. So,
since (1, 0, 2) · (3, 5, 2) < (1, 0, 2) · (3, 2, 7), we have (3, 5, 2) ≺c (3, 2, 7) and
x3

1x
5
2x

2
3 ≺c x3

1x
2
2x

7
3.
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What is a Gröbner basis??

Let P = {x ∈ R
d : Ax = b, x ≥ 0} 6= ∅, where A ∈ Z

n×d and b ∈ Z
n. Let

M be a finite set such that M ⊂ {x ∈ Z
d : Ax = 0} and let ≺ be any term

order on N
d. Then we define the graph Gb such that:

• Nodes of Gb are lattice points inside P .

• Draw a directed edge between a node u and a node v if and only if u ≺ v

for u − v ∈ M .

If Gb is acyclic and has a unique sink for all b with P 6= ∅, then M is a
Gröbner basis for a toric ideal associate with a matrix A with respect to ≺.
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Example (universal Gröbner basis)

A =

[

1 1 1 1

0 1 2 3

]

.

Encode binomials xu − xv in n variables as xuyv in 2n variables
xα = x

α1
1 x

α2
2 . . . , xαn

n and yβ = y
β1
1 y

β2
2 , . . . , yβ

n.

The output is a sum of 538 simple rational functions such as
(

1 − x3y4
x1y2

)(

1 − x1x4y2
x3

)

(1 − x1y1)
(

1 − x1x3y2
2
)

(1 − x3y3) (1 − x2y2).

The number of binomials is 207188785065 and CPU time is 12 seconds.
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Algorithm

Let P := {x ∈ R
d : Ax = b, x ≥ 0}.

Input: c ∈ Z
d, A ∈ Z

n×d, b ∈ Z
n and a feasible solution v0 ∈ P ∩ Z

d.

Output: An optimal solution and the optimal value of minimize c ·x subject
to x ∈ P ∩ Z

d.

Step 1: Compute the Gröbner basis of IA, the toric ideal associated with
A with the term order ≺c.

Step 2: Compute the normal form xu of xv0 and return u and c · u, which
are an optimal solution and the optimal value, respectively.
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Theorem [De Loera, Haws, Hemmecke, Huggins, Sturmfels, Y. (04)]

Let A ∈ Z
m×d. Assuming that m, d are fixed, there is a polynomial time

algorithm to compute a short rational function G(z) which represents the
reduced Gröbner basis of the toric ideal IA w.r.t. any given term order ≺.
Given G and any monomial xa, the following tasks can be performed in
polynomial time:

1. Decide whether xa is in normal form with respect to G(z).

2. Compute the normal form of xa modulo the Gröbner basis G(z).

3. Let b ∈ Z
m and c ∈ Z

d. Given a polyhedron P = {x|Ax = b, x ≥ 0},
compute the integer programming problem:

maximize c · x subject tox ∈ P, x ∈ Z
d.
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Questions??
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Software

LattE is available from our website:

http://www.math.ucdavis.edu/~latte.

If you have any questions about LattE, please send me email at

ruriko@math.duke.edu.

Superrobust Computation 37


