Short Rational Functions for Toric Algebra and Applications

Ruriko Yoshida Dept. of Mathematics Duke University

Joint work with De Loera, Haws, Hemmecke, Huggins and Sturmfels

www.math.duke.edu/~ruriko

September 8th, 2004

Getting started...

HOW MANY WAYS are there?

Let $P = \{x \in \Re^d | Ax = b, x \ge 0\}$, where $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^m$.

Problem: Find the multivariate generating function

$$f(P,z) = \sum_{\alpha \in P \cap \mathbb{Z}^d} z^{\alpha},$$

where $z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_d^{\alpha_d}$.

This is an infinite formal power series if P is not bounded, but if P is a polytope it is a polynomial.

Why we care

We can apply f(P, z) to the followings:

(A) Counting Problem,

(B) Integer Programming,

(C) Integer Feasibility Problem,

(D) Computing the reduced Gröbner basis of a given integral matrix A.

Example for f(P, z)

Let $V_1 = (0,0)$, $V_2 = (5,0)$, $V_3 = (4,2)$, and $V_4 = (0,2)$.

Each vertex is represented by the following monomials:

For $V_1 = (0, 0)$, $z^{V_1} = z_1^0 z_2^0 = 1$. For $V_2 = (5, 0)$, $z^{V_2} = z_1^5 z_2^0 = z_1^5$. For $V_3 = (4, 2)$, $z^{V_3} = z_1^4 z_2^2$. For $V_4 = (0, 2)$, $z^{V_4} = z_1^0 z_2^2 = z_2^2$.

In this manner, we have f(P, z) as the following:

 $f(P, z) = z_1^5 + z_1^4 z_2 + z_1^4 + z_1^4 z_2^2 + z_2 z_1^3 + z_1^3 + z_1^3 z_2^2 + z_2 z_1^2 + z_1^2 + z_1^2 z_2^2 + z_1 z_2 + z_1 + z_1 z_2^2 + z_2^2 + z_2 + 1.$

If we send $z_1 \to 1$ and $z_2 \to 1$, then we have f(P, (1, 1)) = the number of lattice points in P.

However...

The multivariate generating function f(P,z) has exponentially many monomials even though we fixed the dimension.

Question: How can we encode f(P, z) in polynomial size if we fix the dimension??

Answer: We can encode f(P, z) as a short sum of rational functions.

Theorem: [Barvinok (1993)]

Assume that we fix the dimension d and suppose we have a rational convex polyhedron $P = \{ u \in \mathbb{R}^d : A \cdot u = b \text{ and } u \ge 0 \}$, where $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^m$. Then there exists a polynomial time algorithm to compute f(P, z) in the form of:

$$f(P,z) = \sum_{i \in I} \pm \frac{x^{u_i}}{(1 - x^{c_{1,i}})(1 - x^{c_{2,i}})\dots(1 - x^{c_{m-d,i}})}$$

where $u_i, c_{1,i}, \ldots c_{m-d,i} \in \mathbb{Z}^d$ for all $i \in I$.

 $f(P, z) = z_1^5 + z_1^4 z_2 + z_1^4 + z_1^4 z_2^2 + z_2 z_1^3 + z_1^3 + z_1^3 z_2^2 + z_2 z_1^2 + z_1^2 + z_1^2 z_2^2 + z_1 z_2 + z_1 + z_1 z_2^2 + z_2^2 + z_2 + 1$

$$= \frac{1}{(1-z_1)(1-z_2)} + \frac{z_1^5}{(1-z_1^{-1})(1-z_2)} + \frac{z_1^2}{(1-z_1)(1-z_2^{-1})} + \frac{z_1^5}{(1-z_1^{-1}z_2)(1-z_2^{-1})} + \frac{z_1^5}{(1-z_1^{-1}z_2)(1-z_2^{-1})} + \frac{z_1^4z_2^2}{(1-z_1^{-1}z_2^{-1})(1-z_1)} + \frac{z_1^4z_2^2}{(1-z_1^{-1}z_2^{-1})(1-z_1)} + \frac{z_1^5}{(1-z_1^{-1}z_2^{-1})(1-z_1)} + \frac{z_1^5}{(1-z_1^{-1}z_2^{-1})(1-z_1^{-1})} + \frac{z_1^5}{(1-z_1^{-1}z_2^{-1})($$

Symbolic Computation

9

316052820930116909459822049052149787748004963058022997262397.

Computing Gröbner bases via Barvinok's Rational Functions

Some Definitions

Definition Let \prec be a total order on \mathbb{Z}_+^d . We call \prec a *term order* if it satisfies the following:

- For any $\alpha, \beta, \delta \in \mathbb{Z}^d_+$, $\alpha \prec \beta \to \alpha + \delta \prec \beta + \delta$.
- For any $\alpha \in \mathbb{Z}^d_+ \setminus \{0\}, \ 0 \prec \alpha$.

Definition Fix a subset $A = \{a_1, a_2, \ldots, a_d\}$ of \mathbb{Z}^n . Each vector a_i is identified with a monomial in the Laurent polynomial ring $K[\pm t] := K[t, t^2, \ldots, t^d, t^{-1}, t^{-2}, \ldots, t^{-d}]$. Consider the homomorphism induced by the monomial map

$$\hat{\pi}: K[x] \to K[\pm t], x_i \to t^{a_i}.$$

Then the kernel of the homomorphism $\hat{\pi}$ is called the *toric ideal* I_A of A.

Example

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
.

Then the toric ideal of A is:

$$I_A = \{ x^z : z \in \ker(A) \cap \mathbb{Z}^3 \},$$

where $\ker(A) = \{ z \in \mathbb{R}^3 : z = \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \}.$

What is a Gröbner basis??

Let K be any field and let $K[x] = K[x_1, x_2, \ldots, x_d]$ be the polynomial ring in d indeterminates. Given a term order \prec , let $in_{\prec}(f)$ $f \in K[x]$ be an intial monomial of f. If I is an ideal in K[x], then its *initial ideal* is the monomial ideal

$$in_{\prec}(I) := < in_{\prec}(f) : f \in I > .$$

A finite subset $G \subset I$ is called a *Gröbner basis* for I with respect to \prec if $in_{\prec}(I)$ is generated by $\{in_{\prec}(g) : g \in G\}$.

A Gröbner basis is called *reduced* if for any two distinct elements $g, \overline{g} \in G$, no terms of \overline{g} is divisible by $in_{\prec}(g)$.

Example

Let
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$
.

The reduced Gröbner basis accosiated to the matrix A is:

$$G := \{x^{g_1}, \, x^{g_2}, x^{g_3}\}$$
,

where $g_1 = (-1, 2, -1, 0)$, $g_2 = (1, -1, -1, 1)$, and $g_3 = (0, -1, 2, -1)$.

Let $G := \{g_1, g_2, \dots, g_k\}$ be a Gröbner basis for an ideal $I \subset K[x]$ and let $f \in K[x]$. Then there exists a unique $r \in K[x]$ such that:

- No term of r is divisible by any of leading term of g_i , for all i = 1, 2, ..., k.
- There is $g \in I$ such that f = g + r.

r is the remainder on division of f by G and The remainder r for $f \in K[x]$ is called the *normal form* of f.

Want. We want to compute the reduced Gröbner basis associated to the matrix A efficiently.

Problem. There are exponencially many elements in the reduced Gröbner basis even though we fix the dimension.

Solution. Use a short sum of rational functions!

Theorem [De Loera, Haws, Hemmecke, Huggins, Sturmfels, Y.]

Let $A \in \mathbb{Z}^{m \times d}$, $b \in \mathbb{Z}^m$, $W \in \mathbb{Z}^{d \times d}$, where d and m are fixed.

Suppose the term order \prec_W is given. Then there is a polynomial time algorithm to compute the multivariate generating function G(z) for the reduced Gröbner basis of the toric ideal associated to A with the term order \prec_W as a short sum of rational functions.

Why we care?

There are many useful applications.

- Integer Programming
- Counting the number of tables via the Gröbner basis (different from the method I have shown)
- Estimating the number of tables.

Integer Programming

Suppose $A \in Z^{n \times d}$, $c \in Z^d$, and $b \in Z^n$. We assume that the rank of A is n. Given a polyhedron $P = \{x \in \mathbb{R}^d : Ax = b, x \ge 0\}$, we want to solve the following problem:

(IP) minimize
$$c \cdot x$$
 subject to $x \in P, x \in \mathbb{Z}^d$.

These problems are called *integer programming problems* and we know that this problem is NP-hard by Karp. However, Lenstra showed that if we fixed the dimension, we can solve (IP) in polynomial time.

IP via Gröbner bases

Algorithm [Sturmfels]

Input: A cost vector $c \in \mathbb{Z}^d$, a matrix $A \in \mathbb{Z}^{n \times d}$, a vector $b \in \mathbb{Z}^n$ and a feasible solution $v_0 \in P \cap \mathbb{Z}^d$, where $P := \{x \in \mathbb{R}^d : Ax = b, x \ge 0\}$.

Output: An optimal solution and the optimal value of minimize $c \cdot x$ subject to $x \in P \cap \mathbb{Z}^d$.

Step 1: Compute the Gröbner basis with the term order \prec_c .

Step 2: Compute the normal form x^u of x^{v_0} and return u and cu, which are an optimal solution and the optimal value, respectively.

Example

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, $b = \begin{pmatrix} 9 \\ 11 \end{pmatrix}$, and $c = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$.
Let $v_0 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$. Then:
 $G = \{x^v : v = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}\}$ and $u = \begin{pmatrix} 0 \\ 7 \\ 2 \end{pmatrix}$.

Main Theorem

Let $A \in \mathbb{Z}^{m \times d}$. Assuming that m, d are fixed, there is a polynomial time algorithm to compute a short rational function G(z) which represents the reduced Gröbner basis of the toric ideal I_A w.r.t. any given term order \prec . Given G and any monomial x^a , the following tasks can be performed in polynomial time:

- 1. Decide whether x^a is in normal form with respect to G(z).
- 2. Compute the normal form of x^a modulo the Gröbner basis G(z).
- 3. Let $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^d$. Given a polyhedron $P = \{x | Ax = b, x \ge 0\}$, compute the integer programming problem:

minimize cx subject to $x \in P$, $x_i \in \mathbb{Z}$ for $i \in [d]$.

Theory behind it...

Projection Theorem

Theorem [Barvinok and Woods]

Assume the dimension d is a fixed constant. Consider a rational polytope $P \subset \mathbb{R}^d$ and a linear map $T : \mathbb{Z}^d \to \mathbb{Z}^k$. There is a polynomial time algorithm which computes the generating function $f(T(P \cap \mathbb{Z}^d), z)$ as a short sum of rational functions.

$$f(P,z) = \frac{1}{(1-z_1)(1-z_2)} + \frac{z_1^5}{(1-z_1^{-1})(1-z_2)} + \frac{z_1^2}{(1-z_1)(1-z_2^{-1})} + \frac{z_1^5}{(1-z_1^{-1}z_2)(1-z_2^{-1})} + \frac{z_1^4 z_2^2}{(1-z_2^{-1})(1-z_1)} - \frac{z_1^4 z_2^2}{(1-z_1^{-1}z_2^2)(1-z_1^{-1})}.$$

Let T be a projection from $T : \mathbb{R}^2 \to \mathbb{R}$ such that T(x, y) = x.

Then we have:

$$f(T(P \cap \mathbb{Z}^2), z) = \frac{1}{(1-z_1)} + \frac{z_1^5}{(1-z_1^{-1})} = 1 + z_1 + z_1^2 + z_1^3 + z_1^4 + z_1^5.$$

Theorem [Barvinok and Woods]

Let S_1 and S_2 be finite subsets of \mathbb{Z}^d . Suppose that $f(S_1, z)$ and $f(S_2, z)$ are given as short rational functions. If we fix the dimension then there exists a polynomial time algorithm to compute $f(S_1 \cap S_2, z)$.

Corollary [Barvinok and Woods]

Suppose that $f(S_1, z)$ and $f(S_2, z)$ are given as short rational functions. If we fix the dimension then there exist polynomial time algorithms to compute $f(S_1 \cup S_2, z)$ and $f(S_1 \setminus S_2, z)$.

Definition: Let g_1 and g_2 be Laurent power series in $z \in \mathbb{C}^d$ such that $g_1(z) = \sum_{\alpha \in \mathbb{Z}^d} a_{\alpha} z^{\alpha}$ and $g_2(z) = \sum_{\alpha \in \mathbb{Z}^d} b_{\alpha} z^{\alpha}$. Then the Hadamard product $g = g_1 * g_2$ is the power series such that:

$$g(z) = \sum_{\alpha \in \mathbb{Z}^d} a_{\alpha} b_{\alpha} z^{\alpha}.$$

Using the Hadamard product, we can obtain $f(S_1 \cap S_2, z)$ with the given $f(S_1, z)$ and $f(S_2, z)$, where S_1 and S_2 are finite subsets of \mathbb{Z}^d .

Example

Let $S_1 = \{x \in \mathbb{R} : -1 \le x \le 1\} \cap \mathbb{Z}$ and $S_2 = \{x \in \mathbb{R} : 0 \le x \le 2\} \cap \mathbb{Z}$.

$$f(S_1, z) = \frac{z^{-1}}{(1-z)} + \frac{z}{(1-z^{-1})} = \frac{-z^{-2}}{(1-z^{-1})} + \frac{z}{(1-z^{-1})} = g_{11} + g_{12},$$

$$f(S_2, z) = \frac{1}{(1-z)} + \frac{z^2}{(1-z^{-1})} = \frac{-z^{-1}}{(1-z^{-1})} + \frac{z^2}{(1-z^{-1})} = g_{21} + g_{22}.$$

$$f(S_1, z) * f(S_2, z) = g_{11} * g_{21} + g_{12} * g_{22} + g_{12} * g_{21} + g_{11} * g_{22}$$
$$= \frac{z^{-2}}{(1-z^{-1})} + \frac{z}{(1-z^{-1})} + \frac{-z^{-1}}{(1-z^{-1})} + \frac{-z^{-2}}{(1-z^{-1})}$$
$$= \frac{z-z^{-1}}{1-z^{-1}} = 1 + z = f(S_1 \cap S_2, z).$$

Software for Lattice point Enumeration

Source codes are available and you can download from our website: http://www.math.ucdavis.edu/~latte.

If you want to try your examples, please send your example to

latte@math.ucdavis.edu.

Question??

Thanks you...