Short Rational Functions for Toric Algebra and Applications

Ruriko Yoshida
Dept. of Mathematics Duke University

Joint work with De Loera, Haws, Hemmecke, Huggins and Sturmfels www.math.duke.edu/~ruriko

September 8th, 2004

Getting started...

HOW MANY WAYS are there?

?	?	?	?	?	338106
?	?	?	?	?	574203
?	$?$?	?	?	678876
?	?	?	?	?	1213008
	$4_{2_{7}}{ }_{6}{ }^{4} 0_{7_{5}} \quad{ }^{1} 0_{0}{ }_{7_{7}} \quad{ }_{3}^{1}{ }_{2}{ }_{2} 7_{1_{7}}$				

Let $P=\left\{x \in \Re^{d} \mid A x=b, x \geq 0\right\}$, where $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^{m}$.
Problem: Find the multivariate generating function

$$
f(P, z)=\sum_{\alpha \in P \cap \mathbb{Z}^{d}} z^{\alpha}
$$

where $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \ldots z_{d}^{\alpha_{d}}$.
This is an infinite formal power series if P is not bounded, but if P is a polytope it is a polynomial.

Why we care

We can apply $f(P, z)$ to the followings:
(A) Counting Problem,
(B) Integer Programming,
(C) Integer Feasibility Problem,
(D) Computing the reduced Gröbner basis of a given integral matrix A.

Example for $f(P, z)$

$$
\text { Let } V_{1}=(0,0), V_{2}=(5,0), V_{3}=(4,2) \text {, and } V_{4}=(0,2) \text {. }
$$

Each vertex is represented by the following monomials:
For $V_{1}=(0,0), z^{V_{1}}=z_{1}^{0} z_{2}^{0}=1$.
For $V_{2}=(5,0), z^{V_{2}}=z_{1}^{5} z_{2}^{0}=z_{1}^{5}$.
For $V_{3}=(4,2), z^{V_{3}}=z_{1}^{4} z_{2}^{2}$.
For $V_{4}=(0,2), z^{V_{4}}=z_{1}^{0} z_{2}^{2}=z_{2}^{2}$.
In this manner, we have $f(P, z)$ as the following:
$f(P, z)=z_{1}^{5}+z_{1}^{4} z_{2}+z_{1}^{4}+z_{1}{ }^{4} z_{2}^{2}+z_{2} z_{1}^{3}+z_{1}^{3}+z_{1}^{3} z_{2}^{2}+z_{2} z_{1}^{2}+z_{1}^{2}+$ $z_{1}^{2} z_{2}^{2}+z_{1} z_{2}+z_{1}+z_{1} z_{2}^{2}+z_{2}^{2}+z_{2}+1$.

If we send $z_{1} \rightarrow 1$ and $z_{2} \rightarrow 1$, then we have $f(P,(1,1))=$ the number of lattice points in P.

However...

The multivariate generating function $f(P, z)$ has exponentially many monomials even though we fixed the dimension.

Question: How can we encode $f(P, z)$ in polynomial size if we fix the dimension??

Answer: We can encode $f(P, z)$ as a short sum of rational functions.

Theorem: [Barvinok (1993)]

Assume that we fix the dimension d and suppose we have a rational convex polyhedron $P=\left\{u \in \mathbb{R}^{d}: A \cdot u=b\right.$ and $\left.u \geq 0\right\}$, where $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^{m}$. Then there exists a polynomial time algorithm to compute $f(P, z)$ in the form of:

$$
f(P, z)=\sum_{i \in I} \pm \frac{x^{u_{i}}}{\left(1-x^{c_{1, i}}\right)\left(1-x^{c_{2, i}}\right) \ldots\left(1-x^{c_{m-d, i}}\right)}
$$

where $u_{i}, c_{1, i}, \ldots c_{m-d, i} \in \mathbb{Z}^{d}$ for all $i \in I$.

From the previous example

$f(P, z)=z_{1}^{5}+z_{1}^{4} z_{2}+z_{1}^{4}+z_{1}^{4} z_{2}^{2}+z_{2} z_{1}^{3}+z_{1}^{3}+z_{1}^{3} z_{2}^{2}+z_{2} z_{1}^{2}+z_{1}^{2}+$ $z_{1}^{2} z_{2}^{2}+z_{1} z_{2}+z_{1}+z_{1} z_{2}^{2}+z_{2}^{2}+z_{2}+1$
$=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}+\frac{z_{1}^{5}}{\left(1-z_{1}^{-1}\right)\left(1-z_{2}\right)}+\frac{z_{1}^{2}}{\left(1-z_{1}\right)\left(1-z_{2}^{-1}\right)}+\frac{z_{1}^{5}}{\left(1-z_{1}^{-1 z_{2}}\right)\left(1-z_{2}^{-1}\right)}+$
$\frac{z_{1}^{4} z_{2}{ }^{2}}{\left(1-z_{2}^{-1}\right)\left(1-z_{1}\right)}-\frac{z_{1}^{4} z_{2}^{2}}{\left(1-z_{1}^{-1} z_{2}^{2}\right)\left(1-z_{1}^{-1}\right)}$.

Answer of puzzle

$?$	$?$	$?$	$?$	$?$	338106
$?$	$?$	$?$	$?$	$?$	574203
$?$	$?$	$?$	$?$	$?$	678876
$?$	$?$	$?$	$?$	$?$	1213008

316052820930116909459822049052149787748004963058022997262397.

Computing Gröbner bases

via

Barvinok's Rational Functions

Some Definitions

Definition Let \prec be a total order on \mathbb{Z}_{+}^{d}. We call \prec a term order if it satisfies the following:

- For any $\alpha, \beta, \delta \in \mathbb{Z}_{+}^{d}, \alpha \prec \beta \rightarrow \alpha+\delta \prec \beta+\delta$.
- For any $\alpha \in \mathbb{Z}_{+}^{d} \backslash\{0\}, 0 \prec \alpha$.

Definition Fix a subset $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ of \mathbb{Z}^{n}. Each vector a_{i} is identified with a monomial in the Laurent polynomial ring $K[\pm t]:=$ $K\left[t, t^{2}, \ldots, t^{d}, t^{-1}, t^{-2}, \ldots, t^{-d}\right]$. Consider the homomorphism induced by the monomial map

$$
\hat{\pi}: K[x] \rightarrow K[\pm t], x_{i} \rightarrow t^{a_{i}} .
$$

Then the kernel of the homomorphism $\hat{\pi}$ is called the toric ideal I_{A} of A.

Example

$$
\text { Let } A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Then the toric ideal of A is:

$$
\begin{gathered}
I_{A}=\left\{x^{z}: z \in \operatorname{ker}(A) \cap \mathbb{Z}^{3}\right\} \\
\text { where } \operatorname{ker}(A)=\left\{z \in \mathbb{R}^{3}: z=\lambda\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \lambda \in \mathbb{R}\right\} .
\end{gathered}
$$

What is a Gröbner basis??

Let K be any field and let $K[x]=K\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ be the polynomial ring in d indeterminates. Given a term order \prec, let $i n_{\prec}(f) f \in K[x]$ be an intial monomial of f. If I is an ideal in $K[x]$, then its initial ideal is the monomial ideal

$$
i n_{\prec}(I):=<\operatorname{in}_{\prec}(f): f \in I>
$$

A finite subset $G \subset I$ is called a Gröbner basis for I with respect to \prec if $i n_{\prec}(I)$ is generated by $\left\{i n_{\prec}(g): g \in G\right\}$.

A Gröbner basis is called reduced if for any two distinct elements $g, \bar{g} \in G$, no terms of \bar{g} is divisible by $i n_{\prec}(g)$.

Example

$$
\text { Let } A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

The reduced Gröbner basis accosiated to the matrix A is:

$$
\begin{aligned}
& G:=\left\{x^{g_{1}}, x^{g_{2}}, x^{g_{3}}\right\} \\
& \text { where } g_{1}=(-1,2,-1,0), g_{2}=(1,-1,-1,1), \text { and } g_{3}=(0,-1,2,-1)
\end{aligned}
$$

Let $G:=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ be a Gröbner basis for an ideal $I \subset K[x]$ and let $f \in K[x]$. Then there exists a unique $r \in K[x]$ such that:

- No term of r is divisible by any of leading term of g_{i}, for all $i=1,2, \ldots, k$.
- There is $g \in I$ such that $f=g+r$.
r is the remainder on division of f by G and The remainder r for $f \in K[x]$ is called the normal form of f.

Want. We want to compute the reduced Gröbner basis associated to the matrix A efficiently.

Problem. There are exponencially many elements in the reduced Gröbner basis even though we fix the dimension.

Solution. Use a short sum of rational functions!

Theorem [De Loera, Haws, Hemmecke, Huggins, Sturmfels, Y.]

Let $A \in \mathbb{Z}^{m \times d}, b \in \mathbb{Z}^{m}, W \in \mathbb{Z}^{d \times d}$, where d and m are fixed.
Suppose the term order \prec_{W} is given. Then there is a polynomial time algorithm to compute the multivariate generating function $G(z)$ for the reduced Gröbner basis of the toric ideal associated to A with the term order \prec_{W} as a short sum of rational functions.

Why we care?

There are many useful applications.

- Integer Programming
- Counting the number of tables via the Gröbner basis (different from the method I have shown)
- Estimating the number of tables.

Integer Programming

Suppose $A \in Z^{n \times d}, c \in Z^{d}$, and $b \in Z^{n}$. We assume that the rank of A is n. Given a polyhedron $P=\left\{x \in \mathbb{R}^{d}: A x=b, x \geq 0\right\}$, we want to solve the following problem:

$$
\text { (IP) minimize } c \cdot x \text { subject to } \quad x \in P, x \in \mathbb{Z}^{d} \text {. }
$$

These problems are called integer programming problems and we know that this problem is NP-hard by Karp. However, Lenstra showed that if we fixed the dimension, we can solve (IP) in polynomial time.

IP via Gröbner bases

Algorithm [Sturmfels]

Input: A cost vector $c \in \mathbb{Z}^{d}$, a matrix $A \in \mathbb{Z}^{n \times d}$, a vector $b \in \mathbb{Z}^{n}$ and a feasible solution $v_{0} \in P \cap \mathbb{Z}^{d}$, where $P:=\left\{x \in \mathbb{R}^{d}: A x=b, x \geq 0\right\}$.

Output: An optimal solution and the optimal value of minimize $c \cdot x$ subject to $x \in P \cap \mathbb{Z}^{d}$.

Step 1: Compute the Gröbner basis with the term order \prec_{c}.
Step 2: Compute the normal form x^{u} of $x^{v_{0}}$ and return u and $c u$, which are an optimal solution and the optimal value, respectively.

Example

$$
\begin{aligned}
& \text { Let } A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right), b=\binom{9}{11} \text {, and } c=\left(\begin{array}{l}
0 \\
-1 \\
-1
\end{array}\right) . \\
& \text { Let } v_{0}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) \text {. Then: } \\
& G=\left\{x^{v}: v=\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)\right\} \text { and } u=\left(\begin{array}{l}
0 \\
7 \\
2
\end{array}\right) .
\end{aligned}
$$

Main Theorem

Let $A \in \mathbb{Z}^{m \times d}$. Assuming that m, d are fixed, there is a polynomial time algorithm to compute a short rational function $G(z)$ which represents the reduced Gröbner basis of the toric ideal I_{A} w.r.t. any given term order \prec. Given G and any monomial x^{a}, the following tasks can be performed in polynomial time:

1. Decide whether x^{a} is in normal form with respect to $G(z)$.
2. Compute the normal form of x^{a} modulo the Gröbner basis $G(z)$.
3. Let $b \in \mathbb{Z}^{m}$ and $c \in \mathbb{Z}^{d}$. Given a polyhedron $P=\{x \mid A x=b, x \geq 0\}$, compute the integer programming problem:

$$
\text { minimize } c x \text { subject to } x \in P, x_{i} \in \mathbb{Z} \text { for } i \in[d]
$$

Ruriko Yoshida

Theory behind it...

Projection Theorem

Theorem [Barvinok and Woods]
Assume the dimension d is a fixed constant. Consider a rational polytope $P \subset \mathbb{R}^{d}$ and a linear map $T: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{k}$. There is a polynomial time algorithm which computes the generating function $f\left(T\left(P \cap \mathbb{Z}^{d}\right), z\right)$ as a short sum of rational functions.

Example

$f(P, z)=\frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}+\frac{z_{1}^{5}}{\left(1-z_{1}^{-1}\right)\left(1-z_{2}\right)}+\frac{z_{1}^{2}}{\left(1-z_{1}\right)\left(1-z_{2}^{-1}\right)}+\frac{z_{1}^{5}}{\left(1-z_{1}^{-1 z_{2}}\right)\left(1-z_{2}^{-1}\right)}+$
$\frac{z_{1}{ }^{4} z_{2}{ }^{2}}{\left(1-z_{2}{ }^{-1}\right)\left(1-z_{1}\right)}-\frac{z_{1}^{4} z_{2}^{2}}{\left(1-z_{1}^{-1} z_{2}^{2}\right)\left(1-z_{1}^{-1}\right)}$.
Let T be a projection from $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $T(x, y)=x$.
Then we have:
$f\left(T\left(P \cap \mathbb{Z}^{2}\right), z\right)=\frac{1}{\left(1-z_{1}\right)}+\frac{z_{1}^{5}}{\left(1-z_{1}^{-1}\right)}=1+z_{1}+z_{1}^{2}+z_{1}^{3}+z_{1}^{4}+z_{1}^{5}$.

Theorem [Barvinok and Woods]

Let S_{1} and S_{2} be finite subsets of \mathbb{Z}^{d}. Suppose that $f\left(S_{1}, z\right)$ and $f\left(S_{2}, z\right)$ are given as short rational functions. If we fix the dimension then there exists a polynomial time algorithm to compute $f\left(S_{1} \cap S_{2}, z\right)$.

Corollary [Barvinok and Woods]
Suppose that $f\left(S_{1}, z\right)$ and $f\left(S_{2}, z\right)$ are given as short rational functions. If we fix the dimension then there exist polynomial time algorithms to compute $f\left(S_{1} \cup S_{2}, z\right)$ and $f\left(S_{1} \backslash S_{2}, z\right)$.

Definition: Let g_{1} and g_{2} be Laurent power series in $z \in \mathbb{C}^{d}$ such that $g_{1}(z)=\sum_{\alpha \in \mathbb{Z}^{d}} a_{\alpha} z^{\alpha}$ and $g_{2}(z)=\sum_{\alpha \in \mathbb{Z}^{d}} b_{\alpha} z^{\alpha}$. Then the Hadamard product $g=g_{1} * g_{2}$ is the power series such that:

$$
g(z)=\sum_{\alpha \in \mathbb{Z}^{d}} a_{\alpha} b_{\alpha} z^{\alpha}
$$

Using the Hadamard product, we can obtain $f\left(S_{1} \cap S_{2}, z\right)$ with the given $f\left(S_{1}, z\right)$ and $f\left(S_{2}, z\right)$, where S_{1} and S_{2} are finite subsets of \mathbb{Z}^{d}.

Example

Let $S_{1}=\{x \in \mathbb{R}:-1 \leq x \leq 1\} \cap \mathbb{Z}$ and $S_{2}=\{x \in \mathbb{R}: 0 \leq x \leq 2\} \cap \mathbb{Z}$.

$$
\begin{aligned}
& f\left(S_{1}, z\right)=\frac{z^{-1}}{(1-z)}+\frac{z}{\left(1-z^{-1}\right)}=\frac{-z^{-2}}{\left(1-z^{-1}\right)}+\frac{z}{\left(1-z^{-1}\right)}=g_{11}+g_{12}, \\
& f\left(S_{2}, z\right)=\frac{1}{(1-z)}+\frac{z^{2}}{\left(1-z^{-1}\right)}=\frac{-z^{-1}}{\left(1-z^{-1}\right)}+\frac{z^{2}}{\left(1-z^{-1}\right)}=g_{21}+g_{22} .
\end{aligned}
$$

$$
f\left(S_{1}, z\right) * f\left(S_{2}, z\right)=g_{11} * g_{21}+g_{12} * g_{22}+g_{12} * g_{21}+g_{11} * g_{22}
$$

$$
=\frac{z^{-2}}{\left(1-z^{-1}\right)}+\frac{z}{\left(1-z^{-1}\right)}+\frac{-z^{-1}}{\left(1-z^{-1}\right)}+\frac{-z^{-2}}{\left(1-z^{-1}\right)}
$$

$$
=\frac{z-z^{-1}}{1-z^{-1}}=1+z=f\left(S_{1} \cap S_{2}, z\right) .
$$

Software for Lattice point Enumeration

Source codes are available and you can download from our website:
http://www.math.ucdavis.edu/~latte.
If you want to try your examples, please send your example to
latte@math.ucdavis.edu.

Question??

Thanks you...

