Degree bounds for a minimal Markov basis for the three-state toric homogeneous
 Markov chain model

Ruriko Yoshida
Dept. of Statistics University of Kentucky
Joint work with D. Haws and A. Martín del Campo
polytopes.net

Discrete time Markov chain

we consider a discrete time Markov chain X_{t}, with $t=1, \ldots, T(T \geq 3)$, over a finite space of states $[S]=\{1, \ldots, S\}$.

Toric homogeneous Markov chain

Let $\mathbf{w}=\left(s_{1}, \ldots, s_{T}\right)$ be a path of length T on states $[S]$, which is sometimes written as $\omega=\left(s_{1} \cdots s_{T}\right)$ or simply $\omega=s_{1} \cdots s_{T}$. We are interested in Markov bases of toric ideals arising from the following statistical models

$$
\begin{equation*}
p(\omega)=c \gamma_{s_{1}} \beta_{s_{1}, s_{2}} \cdots \beta_{s_{T-1}, s_{T}} \tag{1}
\end{equation*}
$$

where c is a normalizing constant, $\gamma_{s_{i}}$ indicates the probability of the initial state, and $\beta_{s_{i}, s_{j}}$ are the transition probabilities from state s_{i} to s_{j}. The model (1) is called a toric homogeneous Markov chain (THMC) model.

Problem We want to understand a Markov basis under THMC model as $T \rightarrow \infty$.

Recall Markov basis

Suppose $P=\left\{x \in \mathbb{R}^{d} \mid A x=b, x \geq 0\right\} \neq \emptyset$ and let M be a finite set such that $M \subset\left\{x \in \mathbb{Z}^{d} \mid A x=0\right\}$.

We define the graph G_{b} such that:

- Nodes of G_{b} are all the lattice points inside of P.
- We draw an undirected edge between a node u and a node v iff $u-v \in M$.

Definition :

M is called a Markov basis if G_{b} is a connected graph for all b.

Example

				Total
	? ? ?	? ? ?	? ? ?	6
	? ? ?	? ? ?	? ? ?	6
Total	4	4	4	

Table 1: 2×3 tables with 1 -marginals.

There are 19 tables with these marginals.

\pm| 1 | 0 | -1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |

There are 3 elements in a Markov basis modulo signs.

4	0	2				
0	4	2	$+$	-1	0	1
:---:	:---:	:---:				
1	0	-1				

$=$| 3 | 0 | 3 |
| :--- | :--- | :--- |
| 1 | 4 | 1 |

A table with the marginals plus an element of a Markov basis is also a table with the given marginals.

Figure 1: A Markov basis for 2×3 tables. An element of the Markov basis is a undirected edge between integral points in the polytope.

Four models

We refer to them as Model (a), Model (b), Model (c), and Model (d), according to the following:
(a) THMC model (1)
(b) THMC model without initial parameters: when $\gamma_{1}=\cdots=\gamma_{S}$
(c) THMC model without self-loops: $\beta_{s_{i}, s_{j}}=0$ whenever $s_{i}=s_{j}$.
(d) THMC model without initial parameters and without self-loops, i.e., both (b) and (c) are satisfied

Design matrix for Model (a)

Ordering $[S] \cup[S]^{2}$ and $[S]^{T}$ lexicographically, the matrix $A^{(a)}$ is:

	㕲	F	İ	-	İ	İ	İ	สี	少		İ	Ñ	N	\sim	ส	สี
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
11	3	2	1	1	1	0	0	0	2	1	0	0	1	0	0	0
12	0	1	1	1	1	2	1	1	0	1	1	1	0	1	0	0
21	0	0	1	0	1	1	1	0	1	1	2	1	1	1	1	0
22	0	0	0	1	0	0	1	2	0	0	0	1	1	1	2	3

Design matrix for Model (b)

Ordering $[S]^{2}$ and $[S]^{T}$ lexicographically with $S=2$ and $T=4$ the matrix $A^{(b)}$ is:

	三	\#	긐	I	च	च	च	జ్ส	g	\#	İ	สี่	ב	ฐี่	むี	ฐี่
11	3	2	1	1	1	0	0	0	2	1	0	0	1	0	0	0
12	0	1	1	1	1	2	1	1	0	1	1	1	0	1	0	0
21		0	1	0	1	1	1	0	1	1	2	1	1	1	1	0
22	0	0	0	1	0	0	1	2	0	0	0	1	1	1	2	

Good news

Let $P^{(d)}$ be the design polytope for Model (d).
Theorem Let $S=3$. The number of vertices of $P^{(d)}$ is bounded by some constant C which does not depend on T.

Given the above theorem and our normality conjecture for Model (d), one can prove the following conjecture:

Conjecture We consider Model (d). Then for $S=3$ and for any $T \geq 4$, a minimum Markov basis for the toric ideal $I_{A^{(d)}}$, where $A^{(d)}$ is the design matrix under Model (d), consists of binomials of degree less than or equal to $d=6$. Moreover, there are only finitely many moves up to a certain shift equivalence relation.

Bad news

For Model (a),
Theorem The semigroup generated by the columns of the design matrix $A^{(a)}$ is not normal for $S \geq 3$ and $T \geq 4$.

For Model (b),
Theorem The semigroup generated by the columns of the design matrix $A^{(b)}$ is not normal for $S \geq 2$ and $T \geq 3$.

So it is very hard to understand a Markov basis for $T \rightarrow \infty$.
We also think the semigroup generated by the columns of the design matrix $A^{(b)}$ is not normal for $S=3$ and $T \geq 4$. But no proof.

Actually we are very close

For Model (d) with $S=3$ we can go a bit further.
A. Takemura, D. Haws, A. Martín del Campo, and I are still working on this more. Now we have an explicit hypoer plane representations of the design polytope $P^{(d)}$. Also from using this representation we "think" we can show the normality of the semigroup generated by the columns of the design matrix $A^{(d)}$.

By computation $(d \leq 120)$ we can show that the semigroup generated by the columns of the design matrix $A^{(d)}$ is normal.

"Conjecture"

Using Theorem 13.14 in [Sturmfels 1996].
Theorem 13.14 in [Sturmfels 1996] Let $A \subset \mathbb{Z}^{d}$ be a graded set such that the semigroup generated by the elements in A is normal. Then the toric ideal I_{A} associate with the set A is generated by homogeneous binomials of degree at most d.

Using this theorem and our "conjecture" we can show that
Conjecture We consider Model (d). Then for $S=3$ and for any $T \geq 4$, a Markov basis for the toric ideal $I_{A^{(d)}}$ consists of binomials of degree less than or equal to $d=6$. Moreover, there are only finitely many moves up to a certain shift equivalence relation.

Big conjecture

On the experimentations we ran, we found evidence that more should be true.

Conjecture Fix $S \geq 3$; then, for every $T \geq 4$, there is a Markov basis for the toric ideal $I_{A^{(d)}}$ consisting of binomials of degree at most $S-1$, and there is a Gröbner basis with respect to some term ordering consisting of binomials of degree at most S.

Despite the computational limitations (the number of generators grows exponentially when T grows,) we were able to test this conjecture using the software 4 ti2 for $T=4,5,6$ with $S=3$ and $T=4,5$ with $S=4$.

Question??

For downloading our paper please go to
http://arxiv.org/abs/1108.0481.

Thank you!

