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Endophytes species
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Transmission strategies

Relative importance of vertical vs horizontal transmission.

A. Exclusively or almost exclusively transmitted horizontally. The endophyte
will tend to shut down host seed production (“choke disease”), diverting
available plant resources to production of infectious spores. Those spores
spread to developing seeds of neighboring plants.

B. Exclusive vertical transmission. The host exhibits no disease symptoms
due to the endophyte infection. Its seeds develop and germinate normally,
but bear the endophyte and thereby transmit it to the next generation.

C. Mixed vertical and horizontal transmission strategy.
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Host range

1. Some endophytes are restricted to individual host species. This seems
rare for endophyte categories A and C above, but typical of category B.

2. Some are restricted to individual genera.

3. Some are restricted to host tribes.

4. Some are associated mainly with one host tribe, but occasionally can be
identified in the sister tribe.

5. Some are present in a phylogenetically broad range of host tribes.
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Problem

Question. We would like to analyze how grasses and their endophytes
evolved together?

Method.

1. We use phylogenetic trees among grass species and among endophytes
species.

2. Compute pairwise distances in the grass tree and in the endophyte tree.

3. Compute MRCA pairs of two trees.

4. Estimate the probability of codivergence between two trees and compute
their correlations.
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Phylogenetic trees

Data. Sequencing of Chloroplast DNA (cpDNA) Non-Coding Regions. 27
species in each group. Sequences were entered into GenBank as accession
numbers AY450932–AY450949 and EU119353–EU119377.

Based on published phylogenetic inference for the grass subfamily Poöideae
(Soreng and Davis 1998), Brachyelytrum erectum was chosen as the
outgroup for reconstructing the grass phylogenies. The corresponding
endophyte, Epichloë brachyelytri, was the outgroup chosen for endophyte
phylogenies.

We reconstruct phylogenetic trees of grasses (the host tree, TH) and
phylogenetic trees of endophytes (the parasite tree, TP ) via a software
PAUP* under the GTR+G+I model.

Then we used a software r8s to make trees unltrametric (using the least
square method).
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Figure 1: Parametric ML tree estimated from cpDNA intron and intergenic
sequences. Numbers above branches indicate bootstrap support percentages
(over 50%) obtained by 1000 maximum parsimony searches with branch
swapping.
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Figure 2: Ultrametric ML time trees for host grasses and their endophytes.
Hosts and their endophytes are indicated opposite each other or by
connecting dashed lines. Full taxon names are given in Table 1 in our
paper.
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MRCA pairs

A MRCA pair is a pair of a Most Recent Common Ancestor (MRCA) of
any pair of host species and a Most Recent Common Ancestor (MRCA) of
any pair of parasite species.
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MRCA pairs
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Analysis on codivergence

[Legendre et al 2002] etc used all possible pairs of pairwise distances from
the host tree and the parasite tree and used Principal Components Analysis
(PCA) to compute their correlations.

A problem of their method is that we possibly pick the same Most Recent
Common Ancestor (MRCA) pair multiple times. This causes a bias in the
result. In each tip clade a MRCA uniquely relates two taxa. However,
a MRCA deeper in the tree relates multiple taxon pairs. For example,
for congruent H and P trees the matrix of all pairwise distances of H

taxon pairs against all pairwise distances of P taxon pairs represents each
corresponding pair of tip clade MRCAs only once, and each corresponding
pair of deeper MRCAs multiple times. The MRCALink algorithm samples
corresponding H and P MRCA pairs only once.
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MRCALink algorithm

We will go though the algorithm with an example.
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Step 1: Assign each node a unique number such that its number is bigger
than its children.

Step 2: for each interior node in H, from all possible pairs of offsprings,
find corresponding pairs in P .

5: From 5 = (1, 2), we find a new MRCA 5′ = (1′, 2′) in P .

6: From 6 = (3, 4) we find a new MRCA 7′ = (3′, 4′).

7: From 7 = (1, 3) = (2, 3) = (2, 4), we find new MRCAs 6′ = (1′, 3′) and
7′ = (1′, 4′).

Thus, we have pairs (5, 5′), (6, 7′), (7, 7′), (7, 6′).
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Computing the probability of codivergence

Let τH be the set of all ultrametric host trees with n taxa and let τP be the
set of all ultrametric parasite trees with n taxa.

S(X,Y, T, t) =
∑

x∈X,y∈Y

|time(MRCA(x)) − time(MRCA(y))|,

where T ∈ τH, t ∈ τP , X is a set of pairs of taxa in H, and Y is a set of
pairs of taxa in P .

Then we estimate the probability

P (S(X,Y, TH, TP ) ≤ S(X,Y, T, t) : ∀T ∈ τH, ∀t ∈ τP )

which is the estimated probability of codivergence for TH and TP , by
randomly generated trees from τH and τP .
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Results

We analyzed 4 pairs of host trees and parasite trees, namely the full tree
and T1–T4 by removing some of species in the full trees, trimmed trees
(T1–T4).

For each pair of trimmed trees, we removed some species from the
endophytes and corresponding grasses because these endophytes seem to
have holizontal or mixed transmission.
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Table 1: The p-values obtained by applying the dissimilarity method to all
pairwise distances (noted by ALL) and to the MRCALink-derived matrix
(noted by MRCA) for full and T1 – T4 plant and endophyte data sets (see
Table 1 for the data sets). SF means a sampling fraction.

Method Data SF = 0.0005 SF = 0.001 SF = 0.5 SF = 1.0
ALL Full 0.784 0.783 0.677 0.374
MRCA Full 0.123 0.123 0.081 0.039
ALL T1 0.117 0.115 0.035 0.009
MRCA T1 < 0.001 < 0.001 < 0.001 < 0.001
ALL T2 0.093 0.085 0.027 0.012
MRCA T2 < 0.001 < 0.001 < 0.001 < 0.001
ALL T3 0.064 0.061 0.017 0.005
MRCA T3 < 0.001 < 0.001 < 0.001 < 0.001
ALL T4 0.018 0.020 0.005 0.002
MRCA T4 < 0.001 < 0.001 < 0.001 < 0.001
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Cophylogeny
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Cophylogeny

Suppose we have two sets of multi-species sequence data H and P . A
common task in phylogenetics is to infer a tree TH for H, or TP for P .

Let TH be the space of trees on H and TP be the space of trees on P .

A cophylogeny is a pair of trees (TH, TP ) ∈ TH × TP . Usually in a
cophylogeny, the trees TH and TP are related.

Example: H is a set of host species, and P is a set of corresponding
parasite species. Or, H is a set of species, and P is a set of corresponding
orthologous genes in the species.
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Statistical/machine learning
methods for cophylogeny
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Distances between trees

We are applying distances on tree structures to assess codivergences in
related trees (such trees might be for hosts and parasites (or symbionts), or
they may be for distinct, putatively orthologous genes in genomes).

In order to use tools such as linear classifiers, we need biologically meaningful
inner products on trees.
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Why we care?

If we find some outlier trees, then they might represent noncanonical
evolutionary processes such as

• Horizontal transfer of genes between species.

• Ancient polymorphisms maintained by balancing selection.

• Paralogs that may be difficult to distinguish from orthologs by other
means.

• Radically different evolutionary rates between genes.

If we find multiple clusters, then they might represent recombinations.
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Inner products on trees

We are particularly interested in distances d(T1, T2) on trees which can be
expressed by an inner product K in some vector space representation, i.e.
d(T1, T2) =

√

{K(T1 − T2, T1 − T2)}. Examples include

• the l2 inner product on R
(n
2)

+ , the space of dissimilarity maps

• the l2 inner product on R
(n
2)

+ , the space of edge matrices of trees
(k-interval).

• The l2 inner product on R
3·(n

4)
+ , the space of quartets whose i th element

is 1 if the tree T has the particular quartet and is 0 if not.
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Example: k-intervals
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Recall: a k-interval distance between these trees is 2 and the difference
between each pair of leaves can be written as a matrix:
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The distance is the l2 norm of this vector.
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Comparing distributions instead of point estimates of

trees

Given host/parasite (or genes) sequence data H and P , respectively, a
standard method for comparing host/parasite trees is to compute a fixed
host tree T̂H and parasite tree T̂P , and then compute d(T̂H, T̂P ), and then
take d(T̂H, T̂P ) to be the true distance between host and parasite (or gene)
trees.

But there is uncertainty in host/parasite trees, and point estimates of trees
can be unreliable. Given distributions DH and DP on host and parasite trees
(conditional on host/parasite sequence data), we could instead compare the
distributions.
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Example: Difference-of-means testing
Given distributions DH and DP , a classical quantity of interest in statistics
is the difference of means: d(EDH

TH, EDP
TP ).

We can perform difference of means testing for host and parasite tree
distributions

Suppose we have distance d(TH, TP ) defined between trees, given by an
inner product

d(TH, TP ) =
√

K(TH − TP , TH − TP )

in some feature space.

If we define d(DH, DP ) := d(EDH
TH, EDP

TP ), we obtain a metric on tree
distributions. Note this can be written entirely in terms of the inner product
K:
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d(DH, DP )2 :=

−2EDH×DP
K(TH, TP ) + EDH×DH

K(T
{1}
H , T

{2}
H ) + EDP×DP

K(T
{1}
P , T

{2}
P )

Upshot: If we have an oracle to compute K(), then we can estimate
d(DH, DP )2 via MCMC without writing down vector representations of
trees or means. This is an example of a kernel method in machine learning.

Important when vector space is high dimensional but inner product can be
computed quickly. For example if feature vectors are quartet indicators,
then dimension is O(n4), but inner product can be computed in O(n log n)
time.
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We would like to be able to determine whether d(DH, DP ) is significantly
greater than zero.

Now we have the statistical hypothesis:

H0 : d(DH, DP )2 = 0

H1 : d(DH, DP )2 > 0
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Bootstrap

We can bootstrap columns of H to obtain bootstrapped sets of hypothetical
host data Ĥ, and similarly bootstrap P to obtain sets of hypothetical parasite
data P̂ .

Then we determine whether d(DH, DP ) looks significantly large by counting
the number of bootstraps satisfying

d(DH, DP ) < d(DH, D
Ĥ

) + d(DP , D
P̂
) for each bootstrap Ĥ, P̂ .

The p-value for our statistical test is the frequency of the counting.
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Figure 3: Ultrametric ML time trees for plant and endophyte data sets in
[Schardl et al, 2008] constructed via BEAST. Hosts and their endophytes are
indicated by dashed lines. Numeric values on nodes represent their posterior
probabilities estimated by BEAST.

POSTECH 29



Ruriko Yoshida

T. talpoidesGophers Lice

T. bottae

C. merriami

C. castanops

O. hispidus

O. cavator

O. heterodus

O. cherriei

P. bulleri

Z. trichopus

G. bursarius halli

G. bursarius 

majusculus

G. breviceps

G. personatus

Td. barbarae

Td. minor

Gd. thomomyus

Gd. perotensis

Gd. chapini

Gd. panamensis

Gd. setzeri

Gd. cherriei

Gd. nadleri

Gd. trichopi

Gd. actuosi

Gd. oklahome

Gd. geomydis

Gd. ewingi

Gd. texanus

Gd. expansus

Gd. costaricensisO. underwoodi

Figure 4: Ultrametric ML time trees for gopher and louse data sets [Hafner,
1990] constructed via BEAST. [Page and Hafner, 1994] and [Huelsenbeck
et. al., 2000] studied these data sets.
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Results

60, 000 sampled tree via MCMC and 100 bootstrap with k-interval kernel.

For plant-endophytes data sets we got the p-value < 0.001.

For gopher and louse data sets we got the p-value = 0.14.

Applications to the fungal housekeeping genes: From Kerry O’Donnell,
with the Epichloë festucae genome: gene ATUB, BTUB, EF1alpha, HIS,
ITS, MAT, PHO84, RED, TRI101, TRI3, URA.

The TRI3 and TRI101 genes are reported to conflict with each other, even
though they are in the same gene cluster and involved in the same process:
synthesis of toxic trichothecenes.

Our test shows that the p-value = 0.02. Also we found some small p-value
(0.20) between ATUB and ITS, but we think it is because the ITS tends to
be badly homoplastic.
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Other kernel methods for comparing tree distributions

• Rather than test for difference in means, we can also find a plane which
gives the “best separation” between host and parasite tree distributions.

• Method: MCMC sample a cloud of host trees, and a cloud of parasite
trees, and then find the best separating hyperplane (linear decision
boundary) between the clouds, in some vector space.

• In machine learning, SVMs can be used for this task. SVMs can be run
as a kernel method: decision boundary is expressed in terms of host and
parasite trees, without ever writing down explicit vector representations.

• Splitting hyperplane tells us how the host and parasite tree distributions
are different: what features (e.g. which pairs of taxa, or which
quartets) give the highest disagreement between host and parasite tree
distributions.
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Future work

SVMs for tree distributions

Can we define similar statistical/machine learning methods, using geodesic
distance measure?

Are there other more on the space of cophylogenetic trees which are
“biologically meaningful”?
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Advertisement

The Sepcial Session on Advances in Algebraic Statistics

Organized by Sonja Petrović and RY

2010 AMS Spring Southeastern Sectional Meeting

Lexington, KY, March 27–28, 2010 (Saturday – Sunday)

http://www.ams.org/amsmtgs/2162_program_ss2.html#title

POSTECH 34



Ruriko Yoshida

Reference

in Systematic Biology. Volume 57, Issue 3, (2008), p483 – 498

Available at http://arxiv.org/abs/q-bio.PE/0611084

POSTECH 35



Ruriko Yoshida

Thank you....
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