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Comparing NJ to BME

• Very recently it has been shown that neighbor joining is a greedy heuristic for finding

BME trees. This means that NJ actually belongs to a class of several techniques (such

as FastME) which iteratively improve the BME tree length by modifying the tree.

• Specifically, given pairwise distances D, neighbor joining starts with a star tree, and

then repeatedly picks the cherry which results in the largest decrease in BME tree

length D · Wτ where

Wij(τ) = (2)
(1−# of branches between i and j)

for a particular tree topology τ .

• So our motivating question is: How good of a greedy heuristic is NJ for BME? In other

words, how often does NJ recover the BME tree?
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Neighbor joining: Fast and consistent

• Input is pairwise distances D = (dij), presumed to arise as a perturbed tree metric.

Output is a tree topology which induces a tree metric that is hopefully close to D.

• Intuition: Find two nodes which are ’close,’ and join them as a cherry in the tree.

• Actually NJ joins nodes a, b which have minimal Q-criterion:

Qab = (n − 2)dab − (
X

k

dak + dbk)

• Nodes a, b are then replaced by a single new node z which is the root of the cherry

(a, b), and distances dzk are defined as dzk = dak + dbk − 2dab. Then NJ is applied

recursively on the remaining nodes, until a tree is obtained.

• Using Q-values instead of the original distances compensates for short internal edges.
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The NJ is consistent, i.e., it returns the additive tree if the input distance
matrix is tree metric.

However, we usually estimate all pairwise distances via MLE. Usually these
distance matrices are not tree metric.

The NJ returns a tree topology which induces a tree metric that is hopefully
close to the input.

Question: For which distance matrices will the NJ return a particular tree
topology?

We look at the algorithm closely.....
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Neighbor joining’s output is defined by cones

• Notice that all values in Q are linear in the distances, so picking a cherry (a, b) in the

tree means that the distances satisfy linear inequalities:

dab −
1

n − 2
(
X

k

dak + dbk) ≤ dij −
1

n − 2
(
X

k

dik + djk), ∀i, j

Also, after picking cherry (a, b) and replacing it with a new node z, the new distances

dzk are linear in the old distances: dzk = dak + dbk − 2dab.

• Thus NJ will output a particular tree topology τ , and pick cherries in a particular order,

iff the original distances dij satisfy certain linear inequalities. The inequalities define a

cone (apex 0) in R(n
2), which we call a NJ cone.

• So NJ will output a particular tree topology τ iff the pairwise distances D ∈ R(n
2) lie

in a union of NJ cones.
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Example for n = 4

1 2

3 4

1 3

2 4

2 3

1 4

(0, -1, 1, 1, -1, 0)

(-1, 1, 0, 0, 1, -1)

(1, 0, -1, -1, 0, 1)
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Issues with neighbor joining

• Neighbor joining is fast and consistent, but it isn’t based on a model of speciation.

• Until recently, it hasn’t been very clear what NJ is optimizing — if anything at all.

• Neighbor joining outputs a tree topology τ iff the data lies in a union of cones. Unions

of cones need not be convex.

• In fact neighbor joining is not convex: There are distance matrices D, D′, such that

NJ produces the same tree τ1 when run on input D or D′, but NJ produces a different

tree τ2 6= τ1 when run on the input (D + D′)/2
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Balanced Minimum Evolution

The BME is also a distance based method.

This is a weighted LS method to find the closest tree metric such that the
total branch lengths of the tree is the smallest.

It is based on Pauplin’s formula which estimates the total length of a tree,
based on:

(1) its topology τ ,

(2) an estimated distance matrix D = (Dij).

The BME is to find τ such that minτt, t=1,··· ,(2n−5)!! D · Wτt where

Wij(τ) = (2)
(1−# of branches between i and j)
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Example

For the tree topology above, we have

W (τ) = (1/2, 1/4, 1/4, 1/8, 1/8, 1/4, 1/8, 1/8, 1/4, 1/2).
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Note that Pauplin’s formula can be seen as a linear programming such that

min
x∈P ME

n

d · x

such that
PME

n = conv{Wτ1, · · · ,Wτ(2n−5)!!
}.

We call PME
n a BME polytope.
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Combinatorics of the BME polytopes

For up to n = 7 taxa, we computed BME polytopes and studied their
structure.

n dimension of BME polytope f-vector
4 2 (3,3)
5 5 (15, 105, 250, 210, 52)
6 9 (105, 5460, ?, ?, ?, 90262)
7 14 (945, 445410, ?, ?, ?, ?, ?)

For n = 5, 6, the number of edges is
(

n
2

)

, so all pairs of bifurcating tree
topologies τ1, τ2 on n ≤ 6 taxa can be cooptimal for BME, which we found
surprising.

But for n = 7, there is one combinatorial type of non-edge.
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Edges and non-edges of the BME polytope

• We still do not understand which pairs of trees will form edges on the BME polytope.

• If we did understand the edges, then we might be able to devise a competitive alternative

to FastME that improves trees by walking along edges on the BME polytope, rather

than performing nearest-neighbor interchange (NNI) moves.

• Edge-walking is called the simplex algorithm in linear programming, and it works very

well in practice.
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Balanced minimum evolution cones

• For each bifurcating tree topology τ , the BME cone of τ is the set of all choices of

pairwise distances D = (dij) for which τ minimizes the dot-product D · Wτ .

• The edges of the BME polytope emanating from the vertex Wτ determine the facets

(flat sides) of the BME cone of τ . The facets of the BME polytope that contain

Wτ determine the extreme rays of the BME cone of τ . (This is a perfect example of

duality.)

• BME cones are convex.

• Thus the BME method (unlike neighbor joining) is convex: If the BME method

outputs tree topology τ for two inputs D, D′, then BME will also output τ on the

input (D + D′)/2.
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BME cones and NJ cones

• For each tree topology τ , we take the ratio the NJ cones and the BME cone by

comparing the sperical volumes of intersections between the NJ cones and the unit

sphare and between the BME cone and the unit sphare.

• A key requirement is the measurement of volumes of spherical polytopes in high

dimension, which we obtain using a combination of traditional Monte Carlo methods

and polyhedral algorithms.

• Our analysis reveals new insights into the performance of the NJ and BME algorithms

for phylogenetic reconstruction.

• Quick summary stats: Overall agreement between NJ and BME topologies is

100%, 98%, 90%, 80%, 65% for n = 4, 5, 6, 7, 8 taxa.

• For n ≥ 7 taxa, the ability of NJ to recover a BME caterpillar tree decreases much

more quickly than for other BME tree topologies.
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Future work

• We conjecture that the caterpillar tree is the most difficult BME tree for NJ to

reproduce, as the number of taxa grows. Is this true? Why?

• In general, how does NJ’s performance as a greedy BME heuristic depending on the

topology of the BME tree?

• Rather than compare NJ and BME under a Gaussian distribution on R(n
2), one could

use other distributions — namely D = D0 + ǫ, where D0 are the true distances, and

ǫ is either Gaussian or distributed according to the WLS in BME. This might still lead

to some tractable and interesting computational geometry.

• Is there a combinatorial criterion (or at least sufficient conditions) for when two tree

topologies form an edge on the BME polytope? Can this be used as a better way to

move through tree space?
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Thank you....
http://arxiv.org/abs/0710.5142
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