
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Indispensable monomials of toric ideals and

Markov bases

Satoshi Aoki, Akimichi Takemura and Ruriko Yoshida

METR 2005–34 November 2005

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Indispensable monomials of toric ideals and

Markov bases

Satoshi Aoki

Department of Mathematics and Computer Science

Kagoshima University

Akimichi Takemura

Graduate School of Information Science and Technology

University of Tokyo

and

Ruriko Yoshida

Mathematics Department, Duke University

November, 2005

Abstract

Extending the notion of indispensable binomials of a toric ideal ((14), (7)), we define
indispensable monomials of a toric ideal and establish some of their properties. They are
useful for searching indispensable binomials of a toric ideal and for proving the existence
or non-existence of a unique minimal system of binomials generators of a toric ideal. Some
examples of indispensable monomials from statistical models for contingency tables are given.

1 Introduction

In recent years techniques of computational commutative algebra found applications in many
fields, such as optimization (12), computational biology (10; 9; 4), and statistics (11). Par-
ticularly, the algebraic view of discrete statistical models has been applied in many statistical
problems, including conditional inference (3), disclosure limitation (13), the maximum likeli-
hood estimation (4), and parametric inference (9). Algebraic statistics is a new field, less than
a decade old, and its term was coined by Pistone, Riccomagno and Wynn, by the title of their
book (11). Computational algebraic statistics has been very actively developed by both alge-
braists and statisticians since the pioneering work of Diaconis and Sturmfels (3). For sampling
from a finite sample space using Markov chain Monte Carlo methods, Diaconis and Sturmfels
(3) defined the notion of Markov bases and showed that a Markov basis is equivalent to a system
of binomial generators of a toric ideal.

In statistical applications, the number of indeterminates is often large, and at the same
time, there exists some inherent symmetry in the toric ideal. For this reason, we encounter
computational difficulty in applying Gröbner bases to statistical problems. In particular, even
the reduced Gröbner basis of a toric ideal may contain more than several thousands elements,
but one might be able to describe the basis concisely using symmetry. For example, (1) shows
that the unique minimal Markov bases for 3 × 3 × K, K ≥ 5 contingency tables with fixed
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two-dimensional marginals contain only 6 orbits with respect to the group actions of permuting
levels for each axis of contingency tables, while there are 3240, 12085, and 34790 elements in
reduced Gröbner bases for K = 5, 6, and 7, respectively. Furthermore in this example the
reduced Gröbner basis contains dispensable binomials and is not minimal.

Because of the difficulty mentioned above, the first two authors of this paper have been
investigating the question of minimality of Markov bases. In (14), we defined the notion of
indispensable moves, which belong to every Markov basis. We showed that there exists a unique
minimal Markov basis if and only if the set of indispensable moves forms a Markov basis.
Shortly after, Ohsugi and Hibi investigated indispensable binomials. They showed that the
set of indispensable binomials coincides with the intersection of all reduced Gröbner basis with
respect to lexicographic term orders in (8). Thus, we are interested in enumerating indispensable
binomials of a given toric ideal. However, in general, the enumeration itself is a difficult problem.

This paper proposes the notion of indispensable monomials and investigate some of their
properties. The set of indispensable monomials contains all terms of indispensable binomials.
Therefore if we could enumerate indispensable monomials, then it would be straightforward to
enumerate indispensable binomials. Here it may seem that we are replacing a hard problem by
a harder one. Computationally this may well be the case, but we believe that the notion of
indispensable monomials may be useful for understanding indispensable binomials and finding
the existence of the unique minimal Markov basis.

In Section 2 we will set notation and summarize relevant results from (14). In Section 3
we will define indispensable monomials and prove some basic properties of the indispensable
monomials. Further characterizations of indispensable monomials are given in Section 4 and
some nontrivial examples are given in Section 5. We will conclude with some discussions in
Section 6.

2 Preliminaries

In this section we will set appropriate notation and then summarize main results from (14). Be-
cause of the fundamental equivalence mentioned in (3), we use “system of binomial generators”
and “Markov basis” synonymously. Other pairs of synonyms used in this paper are (“bino-
mial”,“move”), (“monomial”, “frequency vector”) and (“indeterminate”, “cell”), as explained
below.

2.1 Notation

Because this paper is based on (14), we follow its notation and terminology in statistical context.
Also we adapt some notation in (12; 6). Vectors, through this paper, are column vectors and x′

denotes the transpose of the vector x.
Let I be a finite set of p = |I| elements. Each element of I is called a cell. By ordering cells,

we write I = {1, . . . , p} hereafter. A nonnegative integer xi ∈ N = {0, 1, . . .} is a frequency of
a cell i and x = (x1, . . . , xp)

′ ∈ N
p is a frequency vector (nonnegative integer vector). We write

|x| =
∑p

i=1 xi to denote the sample size of x. In a framework of similar tests in statistical theory
(see Chapter 4 of (5)), we consider a d-dimensional sufficient statistic defined by

t =

p
∑

i=1

aixi,
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where ai ∈ Z
d = {0,±1, . . .}d is a d-dimensional fixed integral column vector for i = 1, . . . , p.

Let A = (a1, . . . ,ap) = (aji) denote a d × p integral matrix, where aji is the j-th element of ai.
Then the sufficient statistic t is written as t = Ax. The set of frequency vectors for a given
sufficient statistic t is called a t-fiber defined by

Ft = {x ∈ N
p | t = Ax}.

A frequency vector x (∈ N
p) belongs to the fiber FAx by definition. We assume that a toric ideal

is homogeneous, i.e. there exists w such that w′ai = 1, i = 1, . . . , p. In this case the sample size
of t is well defined by |t| = |x| where x ∈ Ft. If the size of FAx is 1, i.e.

FAx = {x},

we call x ∈ N
p a 1-element fiber. |FAx| denotes the size (the number of the elements) of the

fiber FAx. The support of x is denoted by supp(x) = {i | xi > 0} and the i-th coordinate vector
is denoted by ei = (0, . . . , 0, 1, 0, . . . , 0)′, where 1 is in the i-th position.

Now, we consider the connection between contingency tables and toric ideals. Let k[u1, . . . , up] =
k[u] denote the polynomial ring in p indeterminates u1, . . . , up over the field k. We identify the
indeterminate ui ∈ u with the cell i ∈ I. For a p-dimensional column vector x ∈ N

p of non-
negative integers, let ux = ux1

1 · · ·u
xp
p ∈ k[u] denote a monomial. For the sufficient statistic t,

we also treat t = (t1, . . . , td)
′ as indeterminates. Let k[t±1] = k[t1, . . . , td, t

−1
1 , . . . , t−1

d ] denote
the Laurent polynomial ring. Then the system of equations t = Ax is identified as the mapping
π̂ : k[u] → k[t±1] defined as xi 7→ tai = ta1i

1 · · · tadi

d . The kernel of π̂ is denoted by IA = ker(π̂)
and it is the toric ideal associate to the matrix A.

For statistical applications, it is important to construct a connected Markov chain over the
given t-fiber. In (3), Diaconis and Sturmfels showed that a generator of the toric ideal IA forms
a Markov basis, i.e., it can give a connected chain for any t-fiber.

A p-dimensional integral column vector z ∈ Z
p is a move (for A) if it is in the kernel of A,

Az = 0.

Let z+ = (z+
1 , . . . , z+

p )′ and z− = (z−1 , . . . , z−p )′ denote the positive and negative part of a move
z given by

z+
i = max(zi, 0), z−i = −min(zi, 0),

respectively. Then z = z+ − z− and z+ and z− are frequency vectors in the same fiber FAz+(=
FAz−). Adding a move z to any frequency vector x does not change its sufficient statistic,

A(x + z) = Ax,

though x + z may not necessarily be a frequency vector. If adding z to x does not produce
negative elements, we see that x ∈ FAx is moved to another element x + z ∈ FAx by z. In this
case, we say that a move z is applicable to x. z is applicable to x if and only if x + z ∈ FAx,
and equivalently, x ≥ z−, i.e., x − z− ∈ N

p. In particular, z is applicable to z−. We say that
a move z contains a frequency vector x if z+ = x or z− = x. The sample size of z+ (or z−) is
called a degree of z and denoted by

deg(z) = |z+| = |z−|.
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We also write |z| =
∑p

i=1 |zi| = 2 deg(z).
Let B = {z1, . . . , zL} be a finite set of moves. Let x and y be frequency vectors in the

same fiber, i.e., x,y ∈ FAx(= FAy). Following (14), we say that y is accessible from x by B if
there exists a sequence of moves zi1 , . . . , zik from B and εj ∈ {−1, +1}, j = 1, . . . , k, satisfying

y = x +
∑k

j=1 εjzij and x +
∑h

j=1 εjzij ∈ FAx, h = 1, . . . , k − 1. The latter relation means

that the move zih is applicable to x +
∑h−1

j=1 εjzij for h = 1, . . . , k. We write x ∼ y (mod B)
if y is accessible from x by B. An accessibility by B is an equivalence relation in Ft for any t

and each Ft is partitioned into disjoint equivalence classes by B (see (14) for detail). We call
these equivalence classes B-equivalence classes of Ft. Because of symmetry, we also say that x

and y are mutually accessible by B if x ∼ y (mod B). Conversely, if x and y are not mutually
accessible by B, i.e., x and y are elements from two different B-equivalence classes of FAx, we
say that a move z = x − y connects these two equivalence classes.

A Markov basis is defined by (3) as follows. A set of finite moves B = {z1, . . . , zL} is a
Markov basis if Ft itself forms one B-equivalence class for all t. In other words, if B is a Markov
basis, every x,y ∈ Ft are mutually accessible by B for every t. In statistical applications, a
Markov basis makes it possible to construct a connected Markov chain over FAx for any observed
frequency data x.

Diaconis and Sturmfels (3) showed the existence of a finite Markov basis for any A and
gave an algorithm to compute one. These results were obtained by showing the fact that
B = {z1, . . . , zL} is a Markov basis if and only if the set of binomials {uz

+

k − uz
−

k , k = 1, . . . , L}
is a generator of the toric ideal IA associate to A. The algorithm in (3) is based on the elimination
theory of polynomial ideals and computation of a Gröbner basis.

2.2 Summary of relevant facts on indispensable moves and minimal Markov

bases.

In (2; 14; 15), we have investigated the question on the minimality and unique minimality of
Markov bases without computing a Gröbner basis of IA. A Markov basis B is minimal if no
proper subset of B is a Markov basis. A minimal Markov basis always exists, because from
any Markov basis, we can remove redundant elements one by one until none of the remaining
elements can be removed any further. In defining minimality of Markov basis, we have to be
careful on signs of moves, because minimal B can contain only one of z or −z. Also a minimal
Markov basis is unique if all minimal Markov bases coincide except for signs of their elements
((14)).

The structure of the unique minimal Markov basis is given in (14). Here we will summarize
the main results of the paper without proofs. Two particular sets of moves are important. One
is the set of moves z with the same value of the sufficient statistic t = Az+ = Az−, namely

Bt = {z | Az+ = Az− = t},

and the other is the set of moves with degree less than or equal to n, namely

Bn = {z | deg(z) ≤ n}.

Consider the B|t|−1-equivalence classes of Ft for each t. We write this equivalence classes of Ft

as Ft = Ft,1 ∪ · · · ∪ Ft,Kt
.
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Theorem 2.1 (Theorem 2.1 in (14)). Let B be a minimal Markov basis. Then for each t,
B ∩ Bt consists of Kt − 1 moves connecting different B|t|−1-equivalence classes of Ft, such that
the equivalence classes are connected into a tree by these moves.

Conversely, choose any Kt−1 moves zt,1, . . . , zt,Kt−1 connecting different B|t|−1-equivalence
classes of Ft such that the equivalence classes are connected into a tree by these moves. Then

⋃

t:Kt≥2

{zt,1, . . . , zt,Kt−1}

is a minimal Markov basis.

From Theorem 2.1, we immediately have a necessarily and sufficient condition for the exis-
tence of a unique minimal Markov basis.

Corollary 2.1 (Corollary 2.1 in (14)). A minimal Markov basis is unique if and only if for each
t, Ft itself forms one B|t|−1-equivalence class or Ft is a two-element fiber.

This condition is explicitly expressed by indispensable moves.

Definition 2.1. A move z = z+ − z− is called indispensable if z+ and z− form a two-element
fiber, i.e., the fiber FAz+(= FAz−) is written as FAz+ = {z+, z−}.

From the above definition and the structure of a minimal Markov basis, one can show that
every indispensable move belongs to each Markov basis (Lemma 2.3 in (14)). Furthermore, by
the correspondence between moves and binomials, we define an indispensable binomial.

Definition 2.2. A binomial uz = uz+

− uz− is indispensable if every system of binomial gen-
erators of IA contains uz or −uz.

Clearly, a binomial uz is indispensable if and only if a move z is indispensable. By definition,
a set of indispensable moves plays an important role to determine the uniqueness of a minimal
Markov basis:

Lemma 2.1 (Corollary 2.2 in (14)). The unique minimal Markov basis exists if and only if the
set of indispensable moves forms a Markov basis. In this case, the set of indispensable moves is
the unique minimal Markov basis.

Ohsugi and Hibi further investigated indispensable moves (8; 7).

Theorem 2.2 (Theorem 2.4 in (8)). A binomial uz is indispensable if and only if either uz or
−uz belongs to the reduced Gröbner basis of IA for any lexicographic term order on k[u].

One can find more details in (7).

3 Definition and some basic properties of indispensable mono-

mials

In this section we will define indispensable monomials. Then we will show two other equivalent
conditions for a monomial to be indispensable. We will also prove analogous to Theorem 2.4 in
(8), that the set of indispensable monomials is characterized as the intersection of monomials
in reduced Gröbner bases with respect to all lexicographic term orders. Hereafter, we say that
a Markov basis B contains x if it contains a move z containing x by abusing the terminology.

Firstly we will define an indispensable monomial.
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Definition 3.1. A monomial ux is indispensable if every system of binomial generators of IA
contains a binomial f such that ux is a term of f .

From this definition, any Markov basis contains all indispensable monomials. Therefore the
set of indispensable monomials is finite. Note that both terms of an indispensable binomial
uz+

− uz− are indispensable monomials, but the converse does not hold in general.
Now we will present an alternative definition.

Definition 3.2. x is a minimal multi-element if |FAx| ≥ 2 and |FA(x−ei)| = 1 for every
i ∈ supp(x).

Theorem 3.1. x is an indispensable monomial if and only if x is a minimal multi-element.

Proof. First, we suppose that x is a minimal multi-element and want to show that it is an
indispensable monomial. Let n = |x| and consider the fiber FAx. We claim that {x} forms a
single Bn−1-equivalence class. In order to show this, we argue by contradiction. If {x} does not
form a single Bn−1-equivalence class, then there exists a move z with degree less than or equal
to n − 1, such that

x + z = (x − z−) + z+ ∈ FAx.

Since |x| = n, |z−| ≤ n − 1, we have 0 6= x − z− and

supp(x) ∩ supp(x + z) 6= ∅.

Therefore we can choose i ∈ supp(x) ∩ supp(x + z) such that

A(x − ei) = A(x + z − ei), x − ei 6= x + z − ei.

This shows that |FA(x−ei)| ≥ 2, which contradicts the assumption that x is a minimal multi-
element. Therefore we have shown that {x} forms a single Bn−1-equivalence class. Since we
are assuming that |FAx| ≥ 2, there exists some other Bn−1-class in FAx. By Theorem 2.1,
each Markov basis has to contain a move connecting a one element equivalence class {x} to
other equivalence classes of FAx, which implies that each Markov basis has to contain a move z

containing x. We now have shown that each minimal multi-element has to be contained in each
Markov basis, i.e., a minimal multi-element is an indispensable monomial.

Now we will show the converse. It suffices to show that if x is not a minimal multi-element,
then x is a dispensable monomial. Suppose that x is not a minimal multi-element. If x is a
1-element (|FAx| = 1), obviously it is dispensable. Hence assume |FAx| ≥ 2. In the case that
FAx is a single Bn−1-equivalence class, no move containing x is needed in a minimal Markov
basis by Theorem 2.1. Therefore we only need to consider the case that FAx contains more
than one Bn−1-equivalence classes. Because x is not a minimal multi-element, there exists some
i ∈ supp(x) such that |FA(x−ei)| ≥ 2. Then there exists y 6= x − ei, such that Ay = A(x − ei).
Noting that |y| = |x − ei| = n − 1, a move of the form

z = y − (x − ei) = (y + ei) − x

satisfies 0 < deg(z) ≤ n − 1. Then
y + ei = x + z

and x and y + ei belong to the same Bn−1-equivalence class of FAx. Since x 6= y + ei, Theorem
2.1 states that we can construct a minimal Markov basis containing y + ei, but not containing
x. Therefore x is a dispensable monomial.
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We will give yet another definition.

Definition 3.3. x is a minimal i-lacking 1-element if |FAx| = 1, |FA(x+ei)| ≥ 2 and |FA(x+ei−ej)| =
1 for each j ∈ supp(x).

We then have the following result.

Theorem 3.2. The following three conditions are equivalent 1) x is an indispensable monomial,
2) for each i ∈ supp(x), x−ei is a minimal i-lacking 1-element, 3) for some i ∈ supp(x), x−ei

is a minimal i-lacking 1-element.

By the previous theorem we can replace the condition 1) by the condition that x is a minimal
multi-element.

Proof. 1) ⇒ 2). Suppose that x is a minimal multi-element. Then for any i ∈ supp(x), x − ei

is a 1-element and |FA((x−ei)+ei)| = |FAx| ≥ 2. If x − ei is not a minimal i-lacking 1-element,
then for some j ∈ supp(x − ei), |FA(x−ej)| ≥ 2. However j ∈ supp(x − ei) ⊂ supp(x) and
|FA(x−ej)| ≥ 2 contradicts the assumption that x is a minimal multi-element. It is obvious that
2) ⇒ 3).

Finally we will prove 3) ⇒ 1). Suppose that for some i ∈ supp(x), x − ei is a minimal
i-lacking 1-element. Note that |FAx| = |FA((x−ei)+ei)| ≥ 2. Now consider j ∈ supp(x). If
j ∈ supp(x−ei) then |FA(x−ej)| = |FA((x−ei)+ei−ej)| = 1. On the other hand if j 6∈ supp(x−ei),
then j = i because j ∈ supp(x). In this case |FA(x−ei)| = 1. This shows that x is a minimal
multi-element.

Theorem 3.2 suggests the following: Find any 1-element x. It is often the case that each ei,
i = 1, . . . , p, is a 1-element. Randomly choose 1 ≤ i ≤ p and check whether x + ei remains to
be a 1-element. Once |Fx+ei

| ≥ 2, then subtract ej ’s, j 6= i, one by one from x such that it
becomes a minimal i-lacking 1-element. We can apply this procedure to finding indispensable
monomials of some actual statistical problem.

For the rest of this section we will illustrate this procedure with an example of a 2 × 2 × 2
contingency table. Consider the following problem where p = 8, d = 4 and A is given as

A =









1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0









.

In statistics this is known as the complete independence model of 2 × 2 × 2 contingency tables.
To see the direct product structure of I explicitly, we write indeterminates as

u = (u111, u112, u121, u122, u211, u212, u221, u222).

To find indispensable monomials for this problem, we start with the monomial ux = u111 and
consider x + ei, i ∈ I. Then we see that

• u2
111, u111u112, u111u121, u111u211 are 1-elements,

• u111u122, u111u212, u111u221 are 2-elements and

• u111u222 is a 4-element.
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From this, we found four indispensable monomials, u111u122, u111u212, u111u221 and u111u222,
since each of u122, u212, u221, u222 is a 1-element.

Starting from the other monomials, similarly, we can find the following list of indispensable
monomials,

• u111u122, u111u212, u111u221, u112u121, u112u211, u112u222, u121u222, u121u211,
u122u221, u122u212, u211u222, u212u221, each of which is a 2-element monomial, and

• u111u222, u112u221, u121u212, u122u211, each of which is a 4-element monomial.

The next step is to consider the newly produced 1-element monomials,
u2

111, u111u112, u111u121, u111u211 and so on. For each of these monomials, consider adding ei, i ∈
I one by one, checking whether they are multi-element or not. For example, we see that the
monomials such as

u3
111, u

2
111u112, u111u

2
112, . . .

are again 1-element monomials (and we have to consider these 1-element monomials in the next
step). On the other hand, monomials such as

u2
111u122, u111u112u122, u

2
111u222, u111u112u221, . . .

are multi-element monomials. However, it is seen that they are not minimal multi-element, since

u111u122, u112u122, u111u222, u112u221, . . .

are not 1-element monomials.
To find all indispensable monomials for this problem, we have to repeat the above procedure

for monomials of degree 4, 5, . . .. Note that this procedure never stops since there are infinite
1-element monomials, such as

un
111, un

111u
m
112, . . .

for arbitrary n, m. This is the same difficulty mentioned in Section 2.2 in (14). Since indispens-
able monomials belong to any Markov basis, in particular to the Graver basis, Theorem 4.7 in
(12) gives an upper bound for the degree of indispensable monomials and we can stop at this
bound.

Finally we will prove the following theorem, which is analogous to Theorem 2.4 in (8) but
much easier to prove, since it focuses on a single monomial (rather than a binomial). We need
to reproduce only a part of the proof for Theorem 2.4 in (8).

Theorem 3.3. A monomial x is indispensable if for every lexicographic order <lex the reduced
Gröbner basis with respect to <lex contains x.

Proof. It suffices to show that if a monomial x is dispensable, then there exists a lexicographic
term order <lex such that the reduced Gröbner basis B<lex

does not contain x. Note that the
positive part and negative part of a move belong to the same fiber. Therefore if x is a 1-element,
then no Markov basis contains x. In particular no Gröbner basis contains x. Therefore we only
need to consider x such that |FAx| ≥ 2.

Since we are assuming that x is dispensable, there exists a Markov basis B, which does not
contain x. Then there exists a move z = z+ − z− ∈ B, with z’s sign changed if necessary, such
that z is applicable to x, i.e., x ≥ z−. Since B does not contain x, z− 6= x and hence z− is
strictly smaller than x. Now choose <lex such that the initial term of z is z−. Then the reduced
Gröbner basis with respect to <lex does not contain x.
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4 Further properties of indispensable monomials

In the previous section we gave some basic characterizations of indispensable monomials. In
this section we will show further properties of indispensable moves in terms of minimal Markov
bases in (14) and a norm-reducing Markov basis in (15).

Firstly, we will state the following lemma, which is already implicitly used in the proof of
Theorem 3.1.

Lemma 4.1. A monomial ux is indispensable if and only if FAx contains more than one B|x|−1-
equivalence class and the one-element set {x} forms a B|x|−1-equivalence class.

Proof. Suppose that FAx contains more than one B|x|−1-equivalence class and the one-element
set {x} forms a B|x|−1-equivalence class. Then by Theorem 2.1 in (14), every Markov basis has
to connect x with some other B|x|−1-equivalence class of FAx. Therefore x has to appear as a
positive part or a negative part of some move z of the Markov basis.

Conversely, we show that if FAx contains just one B|x|−1-equivalence class or the equivalence
class containing x contains some other vector y, then x is dispensable. In the former case, FAx

is already connected by moves of degree less than or equal to |x| − 1 and no minimal Markov
basis contains a move having x as the positive or the negative part. On the other hand if y 6= x

belongs to the same B|x|−1-equivalence class, then by Theorem 2.1 in (14), there exists a minimal
Markov basis involving y and not x. Therefore x is dispensable.

From (14) it follows that the moves of all minimal Markov bases belong to a common set of
fibers. Also, we defined the minimum fiber Markov bases BMF in (15) as

BMF = {z = z+ − z− | z+ 6∼ z− (mod B|z|−1)}.

Based on Lemma 4.1 now we will prove four propositions concerning the fibers in BMF. In the
following four propositions, an equivalence class of a fiber Ft means a B|t|−1-equivalence class
of Ft.

Proposition 4.1. The following three conditions are equivalent: 1) all equivalence classes of
all fibers of BMF are singletons, 2) there exists a minimal Markov basis, such that all mono-
mials contained in the basis are indispensable. 3) for all minimal Markov bases, all monomials
contained in the basis are indispensable.

Proof. Obviously 3) ⇒ 2). 2) ⇒ 1) follows from Lemma 4.1 because a minimal basis has to
connect all equivalence classes of each fiber of BMF into a tree. To show that 1) ⇒ 3), we again
use the fact that a minimal basis has to connect all equivalence classes of each fiber of BMF into
a tree. If all equivalence classes of a fiber are singletons, then both terms of a move connecting
two equivalence classes are indispensable. This completes the proof.

Proposition 4.2. There exists a minimal Markov basis such that each move of the basis contains
an indispensable monomial if and only if each fiber of BMF contains a singleton equivalence class.

Proof. Let B be a minimal Markov basis such that each move of B contains an indispensable
monomial. This monomial forms a singleton equivalence class. Therefore each fiber of BMF

contains a singleton equivalence class. Conversely if each fiber of BMF contains a singleton
equivalence class, we can construct a tree which connects each equivalence class of the fiber to
the singleton equivalence class. Then the resulting minimal Markov basis has the property that
each move of the basis contains an indispensable monomial.
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Proposition 4.3. Every move of any minimal Markov basis contains an indispensable monomial
if and only if all but one equivalence classes of each fiber of BMF are singletons.

Proof. If all but one equivalence classes of each fiber of BMF are singletons, then in connecting
these equivalence classes into a tree, each move has to contain an indispensable monomial.
On the other hand if there exist two non-singleton equivalence classes in a fiber, then we can
construct a minimal Markov basis containing a move connecting these two equivalence classes.
This move does not contain an indispensable monomial.

Next, we consider indispensable monomials in terms of norm-reduction introduced in (15).
We will give a definition of a norm-reducing Markov basis here (see (15) for detail).

Definition 4.1. A set of moves B is 1-norm reducing if for all t and for all x,y ∈ Ft with
x 6= y, there exist some z ∈ B and ε ∈ {−1, +1} satisfying either

|(x + εz) − y| < |x − y|

or
|x − (y + εz)| < |x − y|.

It is easy to show that, if B is 1-norm reducing, then it is a Markov basis (see Proposition
1 in (15)). Therefore we call B a 1-norm reducing Markov basis if it is 1-norm reducing. An
example of 1-norm reducing Markov basis is the Graver basis (see Proposition 2 in (15)). Now
we will give a characterization of indispensable monomials in terms of the norm reduction.

Proposition 4.4. A move, whose both monomials are indispensable, belongs to each 1-norm
reducing Markov basis.

Proof. Let z = z+ − z− be a move such that both z+ and z− are indispensable, i.e., {z+} and
{z−} are singleton equivalence classes of a fiber. If a Markov basis B does not contain z, then
it can not decrease the distance between z+ and z−. Therefore B is not 1-norm-reducing.

5 Examples

In this section, we will give some indispensable monomials and dispensable monomials in minimal
Markov bases for some statistical models. As is stated in (14), there are some models where
a minimal Markov basis is uniquely determined, and some models where it is not uniquely
determined. Furthermore, by considering the indispensability of monomials contained in minimal
Markov bases, we can classify Markov bases by the indispensability of monomials as follows.

• Case 1. A minimal Markov basis is uniquely determined, i.e., the set of indispensable moves
forms a Markov basis.

• Case 2. A minimal Markov basis is not uniquely determined, but all the monomials in
minimal Markov bases are the same and indispensable. In this case, all equivalence classes
of each fiber of BMF are singletons.

• Case 3. A minimal Markov basis is not uniquely determined, and they contain some moves
where their positive or negative parts are dispensable monomials. In this case, some
equivalence classes of some fiber of BMF are not singletons.

10



We will show examples for Case 2 and Case 3 in this section. As for Case 1, the set of the positive
and negative parts of indispensable binomials is the set of indispensable monomials. One of the
most simple examples for Case 1 is an independence model of two-way contingency tables. A
quite difficult example is a no three-factor interaction model of three-way contingency tables,
i.e., the case that Ax is the two-dimensional marginal totals of three-way contingency tables x.
For this example, minimal Markov bases for some small sizes of x is shown to be unique (see (2)
for example of 3× 3×K case). Indispensable monomials for Case 1 clearly coincide the positive
and negative parts of indispensable binomials.

5.1 Examples of Case 2

One-way contingency tables with fixed totals. First we consider the simplest example
given by A = 1′p, p > 2, where 1p = (1, . . . , 1)′ is the p dimensional vector consisting 1’s. As is
shown in (14), minimal Markov bases for this problem contain dispensable moves only, which
connect p elements,

{u1, u2, . . . , up}

into a tree. It is also obvious that these p monomials are all indispensable.

Complete independence models of three-way contingency tables. We will show a
generalization of the problem considered at the end of Section 3.

Let x be a frequency vector for I × J × K contingency tables and let

I = {ijk | 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K}.

A is given as

A =





1′I ⊗ 1′J ⊗ EK

1′I ⊗ EJ ⊗ 1′K
EK ⊗ 1′J ⊗ 1′K



 ,

where En is the n × n identity matrix. The minimum fiber Markov basis for this problem is
given in (15) as

BMF = BIDP ∪ B∗,
BIDP = {uij1k1

uij2k2
− uij1k2

uij2k1
, j1 6= j2, k1 6= k2}

∪ {ui1jk1
ui2jk2

− ui1jk2
ui2jk1

, i1 6= i2, k1 6= k2}
∪ {ui1j1kui2j2k − ui1j2kui2j1k, i1 6= i2, j1 6= j2},

B∗ = {ui1j1k1
ui2j2k2

− ui1j1k2
ui2j2k1

, ui1j1k1
ui2j2k2

− ui1j2k1
ui2j1k2

,
ui1j1k1

ui2j2k2
− ui1j2k2

ui2j1k1
, ui1j1k2

ui2j2k1
− ui1j2k1

ui2j1k2
,

ui1j1k2
ui2j2k1

− ui1j2k2
ui2j1k1

, ui1j2k1
ui2j1k2

− ui1j2k2
ui2j1k1

,
i1 6= i2, j1 6= j2, k1 6= k2}.

Here, BIDP is the set of indispensable moves. B∗ is the set of all degree 2 moves which connect
all elements of the four-elements fiber

Fi1i2j1j2k1k2
= {x = {xijk} | xi1·· = xi2·· = x·j1· = x·j2· = x··k1

= x··k2
= 1}

= {ui1j1k1
ui2j2k2

, ui1j1k2
ui2j2k1

, ui1j2k1
ui2j1k2

, ui1j2k2
ui2j1k1

}.

The minimal Markov basis in this case consists of BIDP and three moves for each i1 6= i2, j1 6= j2,
and k1 6= k2, which connect four elements of Fi1i2j1j2k1k2

into a tree. In this case, the four
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elements of Fi1i2j1j2k1k2
are different B1-equivalence classes, which are obviously singletons.

Therefore the set of indispensable monomials for this problem is

{ui1j1k1
ui2j2k2

, ui1j1k2
ui2j2k1

, ui1j2k1
ui2j1k2

, ui1j2k2
ui2j1k1

, i1 6= i2, j1 6= j2, k1 6= k2}

in addition to the positive and negative components of BIDP. Figure 1 illustrates the fiber
Fi1i2j1j2k1k2

.

X1 X2

X4X3

Figure 1: Illustration of the 4-element fiber Fi1i2j1j2k1k2
of the complete independence

model of three-way contingency tables. The four circles are four monomials, where x1 =
ui1j1k1

ui2j2k2
,x2 = ui1j1k2

ui2j2k1
,x3 = ui1j2k1

ui2j1k2
, and x4 = ui1j2k2

ui2j1k1
. Each monomial

forms B1-equivalence class of the fiber by itself represented by the dotted square. We will use
this convention in all forthcoming figures. The thick lines mean a choice of three dispensable
moves, {x1 − x2,x1 − x4,x3 − x4}, which is an example of choices for constructing a minimal
Markov basis.

Hardy-Weinberg model. Another example considered in (14) is the Hardy-Weinberg model
for I alleles, i.e.,

x = (x11, x12, . . . , x1I , x22, x23, . . . , x2I , x33, . . . , xII)
′

and
A = (AI AI−1 · · · A1), Ak =

(

Ok×(I−k) B′
k

)′
,

where Bk is the following k × k square matrix

Bk =















2 1 1 · · · 1
0 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 · · · 0 1















.

As is stated in (14), a minimal Markov basis for this case is not unique, and the minimum fiber
Markov basis is:

BMF = BIDP ∪ B∗,
BIDP = {ui1i1ui2i3 − ui1i2ui1i3 , ui1i1ui2i2 − u2

i1i2
},

B∗ = {ui1i2ui3i4 − ui1i3ui2i4 , ui1i2ui3i4 − ui1i4ui2i3 , ui1i3ui2i4 − ui1i4ui2i3},

12



where i1, i2, i3, i4 are all distinct, and uij = uji for i > j. Here, B∗ is the set of all degree 2
moves which connect all of the elements of the three-element fiber

Fi1i2i3i4 = {ui1i2ui3i4 , ui1i3ui2i4 , ui1i4ui2i3}.

Again, these three elements of Fi1i2i3i4 form singleton B1-equivalence classes of it by themselves,
and are indispensable monomials. Figure 2 illustrates the fiber Fi1i2i3i4 .

X1

X2 X3

Figure 2: Illustration of the 3-element fiber Fi1i2i3i4 of the Hardy-Weinberg models. The three
circles are three monomials, x1 = ui1i2ui3i4 ,x2 = ui1i3ui2i4 ,x3 = ui1i4ui2i3 . The thick lines are
the two dispensable moves, {x1 − x2,x2 − x3}.

5.2 Examples of Case 3

Some examples for this case are found in the hierarchical models of 2×2×2×2 contingency tables
considered in (1). First we will show one of them as an example of Case 3. By modifying the
example, we will show another example of the situation considered in Proposition 4.3, i.e., the
situation that some dispensable moves contain both indispensable and dispensable monomials
as their positive and negative parts.

12/13/23/34 model of 2 × 2 × 2 × 2 contingency tables. Let x be a frequency vector for
2×2×2×2 contingency tables (p = 16). We write indeterminates with respect to a lexicographic
order as

u = {u1111, u1112, u1121, u1122, u1211, . . . , u2222}.

Consider the model of d = 9 given as

A =





























1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0





























.
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For this case, there are 12 indispensable moves of degree 2 and 4 indispensable moves of degree 4,
but the set of indispensable moves does not form a Markov basis. In addition to the indispensable
moves, we have to consider moves connecting 4-element fiber

F1 = {u1111u1221u2121u2212, u1112u1221u2121u2211, u1121u1211u2112u2221, u1121u1212u2111u2221}

and 8-element fiber

F2 = {u1111u1221u2122u2212, u1112u1222u2121u2211, u1111u1222u2121u2212, u1112u1221u2122u2211,
u1121u1211u2112u2222, u1122u1212u2111u2221, u1121u1212u2111u2222, u1122u1211u2112u2221}.

For F1, we have B3-equivalence classes of it as

F1 = {u1111u1221u2121u2212, u1112u1221u2121u2211} ∪ {u1121u1211u2112u2221, u1121u1212u2111u2221}.

Therefore these 4 elements are dispensable monomials. In fact, we can find an element of minimal
Markov basis not containing u1111u1221u2121u2212, for example, as

u1112u1221u2121u2211 − u1121u1211u2112u2221.

Similarly for F2, B3-equivalence classes of it are given as

F2 = {u1111u1221u2122u2212, u1112u1222u2121u2211, u1111u1222u2121u2212, u1112u1221u2122u2211},
∪{u1121u1211u2112u2222, u1122u1212u2111u2221, u1121u1212u2111u2222, u1122u1211u2112u2221}.

Figure 3 and Figure 4 illustrate the fiber F 1 and F2, respectively.

X1 X2

X4X3

Figure 3: Illustration of the 4-element fiber F 1 of 12/13/23/34 model of 2×2×2×2 contingency
tables. The four monomials are x1 = u1111u1221u2121u2212,x2 = u1112u1221u2121u2211,x3 =
u1121u1211u2112u2221, and x4 = u1121u1212u2111u2221. {x1,x2} and {x3,x4} form B3-equivalence
classes of the fiber. The thick line is a dispensable move, x1 − x4.

12/13/23/34 model of 2× 2× 2× 2 contingency tables with a structural zero cell. We
modify the previous example by introducing a structural zero cell, x111 ≡ 0. This situation
corresponds to removing the indeterminate u1111 and the first column of A as

u = {u1112, u1121, u1122, u1211, . . . , u2222},
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X1

X6 X7 X8

X2 X4X3

X5

Figure 4: Illustration of the 8-element fiber F 2 of 12/13/23/34 model of 2 × 2 × 2 × 2 contin-
gency tables. The eight monomials are x1 = u1111u1221u2122u2212, x2 = u1112u1222u2121u2211,
x3 = u1111u1222u2121u2212, x4 = u1112u1221u2122u2211, x5 = u1121u1211u2112u2222, x6 =
u1122u1212u2111u2221, x7 = u1121u1212u2111u2222, and x8 = u1122u1211u2112u2221. {x1,x2,x3,x4}
and {x5,x6,x7,x8} form B3-equivalence classes of the fiber. The thick line is a dispensable
move, x2 − x8.

A =





























1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0





























.

In this case, the fiber F1 in the previous example is modified to a 3-element fiber,

F1∗ = {u1112u1221u2121u2211, u1121u1211u2112u2221, u1121u1212u2111u2221}.

Since F1∗ has still different B3-equivalence classes, we have to consider moves connecting the
elements of F1∗ to construct a minimal Markov basis. In this case, B3-equivalence classes of F1∗

are given as

F1∗ = {u1112u1221u2121u2211} ∪ {u1121u1211u2112u2221, u1121u1212u2111u2221}.

Therefore a minimal Markov basis for this problem has to contain either

u1112u1221u2121u2211 − u1121u1211u2112u2221

or
u1112u1221u2121u2211 − u1121u1212u2111u2221.

The above two moves are dispensable, and the negative parts of both moves are also dispens-
able monomials, whereas the positive part, u1112u1221u2121u2211, is an indispensable monomial.
Figure 5 illustrates the fiber F1∗.
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X2

X4X3

Figure 5: Illustration of the 3-element fiber F 1∗ of 12/13/23/34 model of 2×2×2×2 contingency
tables with structural zero cell. This fiber is constructed by removing element x1 from F1. In
this case, {x2} and {x3,x4} form B3-equivalence classes of the fiber. The thick line means a
choice of a dispensable move, x2 − x4. Another possibility of constructing a minimal Markov
basis is to choose a dispensable move, x2 − x3. The monomial x2 is included in any minimal
Markov basis, and is an indispensable monomial.

6 Some discussions

In this paper, the concept of indispensable monomials is introduced, by extending the notion
of indispensable binomials. Both in the framework of Markov bases and toric ideals, the indis-
pensable monomial plays an important role since it has to be included in all Markov bases or
generators of toric ideals. It is true that enumerating indispensable monomials is as difficult as
enumerating indispensable binomials.

Note that, by the notion of indispensable monomials, we can characterize a dispensable
binomial as (i) a difference of two dispensable monomials, (ii) a difference of dispensable and
indispensable monomials, or (iii) a difference of two indispensable monomials. The situations
where each case arises are shown in Proposition 4.3 and in Proposition 4.1. We have found some
examples for the case (ii) by introducing some structural zero cells for the case (i),

The enumeration of indispensable monomials seems very important problem, since it can
lead directly to the enumeration of indispensable binomials. In addition, it also gives the fibers
of the special structure that it contains at least one singleton equivalence class. Moreover, by
finding dispensable binomials which are differences of two indispensable monomials, we can find
all fibers that only contain singleton equivalence classes.
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