
Ruriko Yoshida

An algorithm to compute holes of semi-groups

Ruriko Yoshida
Dept. of Statistics University of Kentucky

Joint work with A. Takemura and R. Hemmecke

www.ms.uky.edu/∼ruriko

RIMS 1



Ruriko Yoshida

Puzzle
Is there a nonnegative integral valued table satisfying these given margins?
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Each cell has nonnegative integral value.
Hint: There exists a nonnegative real valued table satisfying the constraints.
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Answer
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There does not exist such a nonnegative integral valued table, although the
marginals are consistent.
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Suppose we have a given set of margins for contingency tables.

Want: decide whether there exists a table satisfying the given margins.

This is called the multi-dimensional integer planar transportation
problem and it can be applied to data sequrity problem.

In terms of Optimization, we can rewrite this problem as an integral
feasibility problem, that is:

Decide whether there exists an integral solution in the system

Ax = b, x ≥ 0,

where A ∈ Zd×n and b ∈ Zd.
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Observation

Assume the lattice L generated by the columns of A is Zd.

Let cone(A) be the cone generated by the columns of A and
Pb = {x ∈ Rn : Ax = b, x ≥ 0}.

We assume that cone(A) is pointed.

Pb 6= ∅ ⇔ b ∈ cone(A).
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Observation

Let Q be the semigroup generated by the columns ai of A, that is,

Q = {
∑n

i=1
αiai : αi ∈ Z+} ⊂ cone(A) ∩ Zd.

Pb ∩ Zn 6= ∅ ⇔ b ∈ Q.

(Pb 6= ∅)
∧

(Pb ∩ Zn = ∅) ⇔ b ∈
(

cone(A) ∩ Zd − Q
)

.
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We study on the set of holes of Q, H :=
(

cone(A) ∩ Zd
)

− Q.

Motivation: One of motivations is that once we solve this problem, then
we can solve an integer linear feasibility problem efficiently if we vary the
right-hand-side b.

Note: Q is normal (i.e. H = ∅) iff the Hilbert basis of cone(A) is in Q.

Note: Barvinok and Woods showed that: suppose we fix d and n. We can
compute all holes of Q in polynomial time using short rational functions.

However: It is an implicit representation of H, and also their method
cannot be implemented at this moment.

Problem: Find an explicit representation of H.
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Example

Figure 1: Red dots represent holes.

A =

(

1 1 1 1
0 2 3 4

)

.
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Fundamental holes
Def. The semigroup Qsat = cone(A) ∩ L is called the saturation of Q

(i. e. Qsat = Q + H or H = Qsat − Q).

Def. We call a ∈ H ⊂ Qsat, a 6= 0, a fundamental hole if there is no
other hole h′ ∈ H such that h − h′ ∈ Q. Let F be the set of fundamental
holes.

Ex. A = (3 5 7). Qsat = {0, 1, . . .}, Q = {0, 3, 5, 6, 7, . . .}, H = {1, 2, 4}.
Among the 3 holes, 1 and 2 are fundamental. For example, 2 ∈ H is
fundamental because

{0, 1, . . .} ∩ {2,−1,−3,−4,−5, . . .} = {2}.

On the other hand 4 ∈ H is not fundamental because

4 − 1 = 3 ∈ Q.
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Example

Figure 2: Non-holes, holes and fundamental hole for Example.

A =

(

1 1 1 1
0 2 3 4

)

.
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Example cont.

Q has infinitely many holes

H = {(1, 1)⊺ + α · (1, 0)⊺ : α ∈ Z+},

out of which only (1, 1)⊺ is fundamental,

The output from our algorithm looks like:

H = {(1, 1)⊺ + α · (1, 0)⊺ : α ∈ Z+}.
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Computing the holes in f + Q

Let f ∈ F and IA,f ∈ Q[x1, . . . , xn] be the monomial ideal generated by

IA,f = 〈xλ : λ ∈ Zn
+, f + Aλ ∈ (f + Q) ∩ Q〉.

Note. If cone(A) is pointed, there are only finitely many λ ∈ Zn
+ such that

f + Aλ = z for each z ∈ f + Q. Thus, by solving f + Aλ = z, λ ∈ Zn
+ for

all minimal inhomogenuous solutions in (f + Q) ∩ Q, we can find a finite
generating set for IA,f .

Theorem. (Hemmecke, Takemura, Y, 2006) While the monomial xλ

corresponds to z = f + Aλ ∈ f + Q, we have z ∈ (f + Q) ∩ Q if and only
if xλ ∈ IA,f . Thus, the set of holes in f + Q corresponds to the set of
standard monomials of the monomial ideal IA,f .
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Algorithm

Input: A ∈ Zd×n.

Output: An explicit representation of H.

1. Compute the set F of fundamental holes.

2. For each of the finitely many f ∈ F , compute all minimal inhomogenous
solutions (λ, µ) of

{(λ, µ) ∈ Z2n
+ : f + Aλ = Aµ}. (1)

3. From the minimal inhomogenous solutions (λ, µ) of (1), compute an
explicit representation of the holes of Q in f + Q.
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Computing fundamental holes
The set F of fundamental holes is finite, since it is a subset of the lattice
points in

P :=







n
∑

j=1

λjA.j : 0 ≤ λ1, . . . , λn < 1







.

Algorithm. (Computing fundamental holes)

• Compute the minimal integral generating set B of cone(A) ∩ L.

• Check each z ∈ B whether it is a fundamental hole or not, that is,
compute B ∩ F .

• Generate all nonnegative integer combinations of elements in B ∩F that
lie in P and check for each such z whether it is a fundamental hole or
not.
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Example cont

In our example, the lattice L = Z2. With this, the minimal Hilbert basis B

of cone(A) ∩ L consists of 5 elements:

B = {(1, 0)⊺, (1, 1)⊺, (1, 2)⊺, (1, 3)⊺, (1, 4)⊺},

out of which only (1, 1)⊺ is a hole.

Being in B, (1, 1)⊺ must be a fundamental hole. Thus, B ∩ F = {(1, 1)⊺}.

Note that 2 · (1, 1)⊺ = (2, 2)⊺ ∈ Q and consequently, there is no other
fundamental hole in Qsat, i.e. F = {(1, 1)⊺}.
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Computing minimal inhomogenous solutions

The (finitely many) minimal inhomogeneous solutions to the above linear
system can be computed, for example, with 4ti2.

Example cont. Let f = (1, 1)⊺ and consider (f + Q) ∩ Q. The linear
system to solve is

1 + λ1 + λ2 + λ3 + λ4 = µ1 + µ2 + µ3 + µ4
1 + 2λ2 + 3λ3 + 4λ4 = 2µ2 + 3µ3 + 4µ4

with λi, µj ∈ Z+, i, j ∈ {1, 2, 3, 4}.
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Example cont

4ti2 gives the following 5 minimal inhomogeneous solutions (λ, µ) to
system (1):

(λ, µ) → z = f + Aλ

(0, 0, 0, 2, 0, 0, 3, 0)⊺ → (3, 9)⊺

(0, 1, 0, 0, 1, 0, 1, 0)⊺ → (2, 3)⊺

(0, 0, 1, 0, 1, 0, 0, 1)⊺ → (2, 4)⊺

(0, 0, 1, 0, 0, 2, 0, 0)⊺ → (2, 4)⊺

(0, 0, 0, 1, 0, 1, 1, 0)⊺ → (2, 5)⊺

Thus, we have {(2, 3)⊺, (2, 4)⊺, (2, 5)⊺, (3, 9)⊺}.
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Example cont

Construct the generators of the monomial ideal IA,f by finding all
representations of the form z = f + Aλ, λ ∈ Z4

+ for each z in (f + Q) ∩ Q

for each z ∈ {(2, 3)⊺, (2, 4)⊺, (2, 5)⊺, (3, 9)⊺}.

z = f + Aλ

(2, 3)⊺ = (1, 1)⊺ + A(0, 1, 0, 0)⊺

(2, 4)⊺ = (1, 1)⊺ + A(0, 0, 1, 0)⊺

(2, 5)⊺ = (1, 1)⊺ + A(0, 0, 0, 1)⊺

(3, 9)⊺ = (1, 1)⊺ + A(0, 0, 0, 4)⊺
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Example

Thus, we get the monomial ideal

IA,f = 〈x2, x3, x4〉,

whose set of standard monomials is {xα
1 : α ∈ Z+}.

Thus, the set of holes in f + Q is

{f + αA1 : α ∈ Z+} = {(1, 1)⊺ + α(1, 0)⊺ : α ∈ Z+}
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Applications to contingency tables
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Sequencial Importance Sampling (SIS)

For a formal definition of SIS, see (Chen, 2001), (Chen, Diaconis, Holmes,
Liu 2005), (Chen, Dinwoodie, Sullivant, 2006), etc., etc.

How does SIS work?
For example, suppose we have the following table.

7 5 1 13
5 10 6 21
2 6 8 16

14 21 15 50

Now we consider τ , all integral valued tables with the same column sums
ci and row sums ri for i = 1, 2, 3.
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Example cont...

We want to sample a table from τ . We pick an integer from [0, min{8, 9}]
with some distribution (say a uniform distribution). For example, we picked
5.

5 ? ? 13
? ? ? 21
? ? ? 16

14 21 15 50

Then update r1 and c1 as follows:

5 ? ? 8
? ? ? 21
? ? ? 16

9 21 15 50
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Example cont...

We do this process untill we fill up all cells. Then we get a table:

5 7 1 13
7 8 6 21
2 6 8 16

14 21 15 50

Questions: How can we choose a sample which does not end up a
non-consistant table? Relations between holes and samples.
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SIS and holes

Suppose (Ti1,··· ,im) ∈ τ be a d1 × · · · × dm table and we set:

b = Ax,

where x = (T1,1,··· ,1, T1,1,··· ,2, · · · , Td1,d2,··· ,dm) and
b = (

∑

i1
Ti1,··· ,im, · · · ,

∑

im
Ti1,··· ,im).

Thus we can rewrite:

b = A1x1 + A2x2 + · · · + Anxn, xi ∈ Z+.

To get a table satisfying the given marginals, we take a path

A1x1 → A1x1 + A2x2 → · · · → A1x1 + A2x2 + · · · + Anxn.
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From the view of Q

.
 
.
 
.

An

An−1

b = A1x1 + · · · + Anxn

xi ∈ N
A2

A1

Taking a sample via SIS can be viewed as a path from the origin to b ∈ Q.
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SIS and holes

Suppose Q is not normal (such as three-way tables).

To sample via SIS, we need to check if it is possible to reach b from the
current point s = A1y1 + A2y2 + · · · + Anyn.

To check there is a path from s to b by adding zi ∈ Z+ to yi for some i:

• If b − s ∈ Q, then there is a path.

• If b − s ∈ H, then we reject.

Thus knowing H, one might be speed up some computation of SIS. (we
need to investigate how practical our algorithm is).
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Finiteness of holes of Q

Theorem: (Takemura and Y, 2006): Suppose we fix d and n. Then, there
is a polynomial time algorithmm to decide whether the set of holes H of Q

for a matrix A is finite or not.

Examples: The matrix for defining 2 × 2 × 2 × 2 tables with 2-marginals
has finitely many holes.

2 × 2 × 2 × 2 tables with 2-marginals and 3-marginal i.e. [12][13][14][123]
and with levels of 2 on each node has infinitely many holes.
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Prop. [Takemura and Y., 2006]

3 × 4 × 7 table with 2-marginals has infinite number of holes.

Sketch of pf.

sum
c 0 0 0 c

0 0 0 0 0
0 0 0 0 0

sum c 0 0 0 c

Table 1: the 7-th 3 × 4 slice is uniquely determined by its row and its
column sums. c is an arbitrary positive integer. Thus for each choice of
positive integer the beginning 3 × 4 × 6 part remains to be a hole. Since
the positive integer is arbitrary, 3× 4× 7 table has infinite number of holes.
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Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem
6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality
(i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not
known only for the following three cases:

5 × 5 × 3, 5 × 4 × 3, 4 × 4 × 3.

Note. 4× 4× 3 is solved! We want to decide whether semigroups of these
tables above are normal or not.

Also we want to decide whether 3× 4× 6 table with 2-margins have a finite
number of holes.

RIMS 29



Ruriko Yoshida

Questions?
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A preprint is available at arxiv:

http://arxiv.org/abs/math.CO/0607599
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Thank you....
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