An algorithm to compute holes of semi-groups

Ruriko Yoshida
Dept. of Statistics University of Kentucky
Joint work with A. Takemura and R. Hemmecke
www.ms.uky.edu/~ruriko

Puzzle

Is there a nonnegative integral valued table satisfying these given margins?

Each cell has nonnegative integral value.
Hint: There exists a nonnegative real valued table satisfying the constraints.

Answer

There does not exist such a nonnegative integral valued table, although the marginals are consistent.

Suppose we have a given set of margins for contingency tables.
Want: decide whether there exists a table satisfying the given margins.
This is called the multi-dimensional integer planar transportation problem and it can be applied to data sequrity problem.

In terms of Optimization, we can rewrite this problem as an integral feasibility problem, that is:

Decide whether there exists an integral solution in the system

$$
A x=b, x \geq 0
$$

where $A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^{d}$.

Observation

Assume the lattice L generated by the columns of A is \mathbb{Z}^{d}.
Let cone (A) be the cone generated by the columns of A and $P_{b}=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$.

We assume that cone (A) is pointed.

$$
P_{b} \neq \emptyset \Leftrightarrow b \in \operatorname{cone}(A) .
$$

Observation

Let Q be the semigroup generated by the columns a_{i} of A, that is, $Q=\left\{\sum_{i=1}^{n} \alpha_{i} \boldsymbol{a}_{i}: \alpha_{i} \in \mathbb{Z}_{+}\right\} \subset \operatorname{cone}(A) \cap \mathbb{Z}^{d}$.

$$
\begin{gathered}
P_{b} \cap \mathbb{Z}^{n} \neq \emptyset \Leftrightarrow b \in Q . \\
\left(P_{b} \neq \emptyset\right) \bigwedge\left(P_{b} \cap \mathbb{Z}^{n}=\emptyset\right) \Leftrightarrow b \in\left(\operatorname{cone}(A) \cap \mathbb{Z}^{d}-Q\right) .
\end{gathered}
$$

We study on the set of holes of $Q, H:=\left(\operatorname{cone}(A) \cap \mathbb{Z}^{d}\right)-Q$.
Motivation: One of motivations is that once we solve this problem, then we can solve an integer linear feasibility problem efficiently if we vary the right-hand-side b.

Note: Q is normal (i.e. $H=\emptyset$) iff the Hilbert basis of cone (A) is in Q.
Note: Barvinok and Woods showed that: suppose we fix d and n. We can compute all holes of Q in polynomial time using short rational functions.

However: It is an implicit representation of H, and also their method cannot be implemented at this moment.

Problem: Find an explicit representation of H.

Example

Figure 1: Red dots represent holes.

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4
\end{array}\right)
$$

Fundamental holes

Def. The semigroup $Q_{\text {sat }}=\operatorname{cone}(A) \cap L$ is called the saturation of Q (i. e. $Q_{\text {sat }}=Q+H$ or $H=Q_{\text {sat }}-Q$).

Def. We call $\boldsymbol{a} \in H \subset Q_{\text {sat }}, \boldsymbol{a} \neq 0$, a fundamental hole if there is no other hole $h^{\prime} \in H$ such that $h-h^{\prime} \in Q$. Let F be the set of fundamental holes.

Ex. $A=\left(\begin{array}{ll}3 & 5 \\ 7\end{array}\right) . Q_{\text {sat }}=\{0,1, \ldots\}, Q=\{0,3,5,6,7, \ldots\}, H=\{1,2,4\}$. Among the 3 holes, 1 and 2 are fundamental. For example, $2 \in H$ is fundamental because

$$
\{0,1, \ldots\} \cap\{2,-1,-3,-4,-5, \ldots\}=\{2\} .
$$

On the other hand $4 \in H$ is not fundamental because

$$
4-1=3 \in Q .
$$

Example

Figure 2: Non-holes, holes and fundamental hole for Example.

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4
\end{array}\right)
$$

Example cont.

Q has infinitely many holes

$$
H=\left\{(1,1)^{\top}+\alpha \cdot(1,0)^{\top}: \alpha \in \mathbb{Z}_{+}\right\}
$$

out of which only $(1,1)^{\top}$ is fundamental,
The output from our algorithm looks like:

$$
H=\left\{(1,1)^{\top}+\alpha \cdot(1,0)^{\top}: \alpha \in \mathbb{Z}_{+}\right\}
$$

Computing the holes in $f+Q$

Let $f \in F$ and $I_{A, f} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be the monomial ideal generated by

$$
I_{A, f}=\left\langle x^{\lambda}: \lambda \in \mathbb{Z}_{+}^{n}, f+A \lambda \in(f+Q) \cap Q\right\rangle
$$

Note. If cone (A) is pointed, there are only finitely many $\lambda \in \mathbb{Z}_{+}^{n}$ such that $f+A \lambda=z$ for each $z \in f+Q$. Thus, by solving $f+A \lambda=z, \lambda \in \mathbb{Z}_{+}^{n}$ for all minimal inhomogenuous solutions in $(f+Q) \cap Q$, we can find a finite generating set for $I_{A, f}$.

Theorem. (Hemmecke, Takemura, Y, 2006) While the monomial x^{λ} corresponds to $z=f+A \lambda \in f+Q$, we have $z \in(f+Q) \cap Q$ if and only if $x^{\lambda} \in I_{A, f}$. Thus, the set of holes in $f+Q$ corresponds to the set of standard monomials of the monomial ideal $I_{A, f}$.

Algorithm

Input: $A \in \mathbb{Z}^{d \times n}$.
Output: An explicit representation of H.

1. Compute the set F of fundamental holes.
2. For each of the finitely many $f \in F$, compute all minimal inhomogenous solutions (λ, μ) of

$$
\begin{equation*}
\left\{(\lambda, \mu) \in \mathbb{Z}_{+}^{2 n}: f+A \lambda=A \mu\right\} \tag{1}
\end{equation*}
$$

3. From the minimal inhomogenous solutions (λ, μ) of (1), compute an explicit representation of the holes of Q in $f+Q$.

Computing fundamental holes

The set F of fundamental holes is finite, since it is a subset of the lattice points in

$$
P:=\left\{\sum_{j=1}^{n} \lambda_{j} A_{. j}: 0 \leq \lambda_{1}, \ldots, \lambda_{n}<1\right\}
$$

Algorithm. (Computing fundamental holes)

- Compute the minimal integral generating set B of cone $(A) \cap L$.
- Check each $z \in B$ whether it is a fundamental hole or not, that is, compute $B \cap F$.
- Generate all nonnegative integer combinations of elements in $B \cap F$ that lie in P and check for each such z whether it is a fundamental hole or not.

Example cont

In our example, the lattice $L=\mathbb{Z}^{2}$. With this, the minimal Hilbert basis B of cone $(A) \cap L$ consists of 5 elements:

$$
B=\left\{(1,0)^{\top},(1,1)^{\top},(1,2)^{\top},(1,3)^{\top},(1,4)^{\top}\right\}
$$

out of which only $(1,1)^{\top}$ is a hole.
Being in $B,(1,1)^{\top}$ must be a fundamental hole. Thus, $B \cap F=\left\{(1,1)^{\top}\right\}$. Note that $2 \cdot(1,1)^{\top}=(2,2)^{\top} \in Q$ and consequently, there is no other fundamental hole in $Q_{\text {sat }}$, i.e. $F=\left\{(1,1)^{\top}\right\}$.

Computing minimal inhomogenous solutions

The (finitely many) minimal inhomogeneous solutions to the above linear system can be computed, for example, with 4ti2.

Example cont. Let $f=(1,1)^{\top}$ and consider $(f+Q) \cap Q$. The linear system to solve is

$$
\begin{aligned}
& \text { with } \lambda_{i}, \mu_{j} \in \mathbb{Z}_{+}, i, j \in\{1,2,3,4\} \text {. }
\end{aligned}
$$

Example cont

4 ti2 gives the following 5 minimal inhomogeneous solutions (λ, μ) to system (1):

$$
\begin{aligned}
(\lambda, \mu) & \rightarrow z=f+A \lambda \\
(0,0,0,2,0,0,3,0)^{\top} & \rightarrow(3,9)^{\top} \\
(0,1,0,0,1,0,1,0)^{\top} & \rightarrow(2,3)^{\top} \\
(0,0,1,0,1,0,0,1)^{\top} & \rightarrow(2,4)^{\top} \\
(0,0,1,0,0,2,0,0)^{\top} & \rightarrow(2,4)^{\top} \\
(0,0,0,1,0,1,1,0)^{\top} & \rightarrow(2,5)^{\top}
\end{aligned}
$$

Thus, we have $\left\{(2,3)^{\top},(2,4)^{\top},(2,5)^{\top},(3,9)^{\top}\right\}$.

Example cont

Construct the generators of the monomial ideal $I_{A, f}$ by finding all representations of the form $z=f+A \lambda, \lambda \in \mathbb{Z}_{+}^{4}$ for each z in $(f+Q) \cap Q$ for each $z \in\left\{(2,3)^{\top},(2,4)^{\top},(2,5)^{\top},(3,9)^{\top}\right\}$.

$$
\begin{aligned}
z & =f+A \lambda \\
(2,3)^{\top} & =(1,1)^{\top}+A(0,1,0,0)^{\top} \\
(2,4)^{\top} & =(1,1)^{\top}+A(0,0,1,0)^{\top} \\
(2,5)^{\top} & =(1,1)^{\top}+A(0,0,0,1)^{\top} \\
(3,9)^{\top} & =(1,1)^{\top}+A(0,0,0,4)^{\top}
\end{aligned}
$$

Example

Thus, we get the monomial ideal

$$
I_{A, f}=\left\langle x_{2}, x_{3}, x_{4}\right\rangle,
$$

whose set of standard monomials is $\left\{x_{1}^{\alpha}: \alpha \in \mathbb{Z}_{+}\right\}$.
Thus, the set of holes in $f+Q$ is

$$
\left\{f+\alpha A_{1}: \alpha \in \mathbb{Z}_{+}\right\}=\left\{(1,1)^{\top}+\alpha(1,0)^{\top}: \alpha \in \mathbb{Z}_{+}\right\}
$$

Applications to contingency tables

Sequencial Importance Sampling (SIS)

For a formal definition of SIS, see (Chen, 2001), (Chen, Diaconis, Holmes, Liu 2005), (Chen, Dinwoodie, Sullivant, 2006), etc., etc.

How does SIS work?

For example, suppose we have the following table.

7	5	1	13
5	10	6	21
2	6	8	16
14	21	15	50

Now we consider τ, all integral valued tables with the same column sums c_{i} and row sums r_{i} for $i=1,2,3$.

Example cont...

We want to sample a table from τ. We pick an integer from $[0, \min \{8,9\}]$ with some distribution (say a uniform distribution). For example, we picked 5.

5	$?$	$?$	13
$?$	$?$	$?$	21
$?$	$?$	$?$	16
14	21	15	50

Then update r_{1} and c_{1} as follows:

5	$?$	$?$	8
$?$	$?$	$?$	21
$?$	$?$	$?$	16
9	21	15	50

Example cont...

We do this process untill we fill up all cells. Then we get a table:

5	7	1	13
7	8	6	21
2	6	8	16
14	21	15	50

Questions: How can we choose a sample which does not end up a non-consistant table? Relations between holes and samples.

SIS and holes

Suppose $\left(T_{i_{1}, \cdots, i_{m}}\right) \in \tau$ be a $d_{1} \times \cdots \times d_{m}$ table and we set:

$$
b=A x
$$

where $x=\left(T_{1,1, \cdots, 1}, T_{1,1, \cdots, 2}, \cdots, T_{d_{1}, d_{2}, \cdots, d_{m}}\right)$ and $b=\left(\sum_{i_{1}} T_{i_{1}, \cdots, i_{m}}, \cdots, \sum_{i_{m}} T_{i_{1}, \cdots, i_{m}}\right)$.

Thus we can rewrite:

$$
b=A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{n} x_{n}, x_{i} \in \mathbb{Z}_{+}
$$

To get a table satisfying the given marginals, we take a path

$$
A_{1} x_{1} \rightarrow A_{1} x_{1}+A_{2} x_{2} \rightarrow \cdots \rightarrow A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{n} x_{n}
$$

From the view of Q

Taking a sample via SIS can be viewed as a path from the origin to $b \in Q$.

SIS and holes

Suppose Q is not normal (such as three-way tables).
To sample via SIS, we need to check if it is possible to reach b from the current point $s=A_{1} y_{1}+A_{2} y_{2}+\cdots+A_{n} y_{n}$.

To check there is a path from s to b by adding $z_{i} \in \mathbb{Z}_{+}$to y_{i} for some i :

- If $b-s \in Q$, then there is a path.
- If $b-s \in H$, then we reject.

Thus knowing H, one might be speed up some computation of SIS. (we need to investigate how practical our algorithm is).

Finiteness of holes of Q

Theorem: (Takemura and Y, 2006): Suppose we fix d and n. Then, there is a polynomial time algorithmm to decide whether the set of holes H of Q for a matrix A is finite or not.

Examples: The matrix for defining $2 \times 2 \times 2 \times 2$ tables with 2 -marginals has finitely many holes.
$2 \times 2 \times 2 \times 2$ tables with 2 -marginals and 3-marginal i.e. [12][13][14][123] and with levels of 2 on each node has infinitely many holes.

Prop. [Takemura and Y., 2006]
$3 \times 4 \times 7$ table with 2 -marginals has infinite number of holes.

Sketch of pf.

					sum
	c	0	0	0	c
	0	0	0	0	0
	0	0	0	0	0
sum	c	0	0	0	c

Table 1: the 7 -th 3×4 slice is uniquely determined by its row and its column sums. c is an arbitrary positive integer. Thus for each choice of positive integer the beginning $3 \times 4 \times 6$ part remains to be a hole. Since the positive integer is arbitrary, $3 \times 4 \times 7$ table has infinite number of holes.

Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem 6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality (i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not known only for the following three cases:

$$
5 \times 5 \times 3, \quad 5 \times 4 \times 3, \quad 4 \times 4 \times 3
$$

Note. $4 \times 4 \times 3$ is solved! We want to decide whether semigroups of these tables above are normal or not.

Also we want to decide whether $3 \times 4 \times 6$ table with 2 -margins have a finite number of holes.

Questions?

A preprint is available at arxiv:

http://arxiv.org/abs/math.CO/0607599

Thank you....

