An algorithm to compute holes of semi-groups

Ruriko Yoshida Dept. of Statistics University of Kentucky

Joint work with A. Takemura and R. Hemmecke

www.ms.uky.edu/~ruriko

1

Puzzle

Is there a nonnegative integral valued table satisfying these given margins?

Each cell has nonnegative integral value.

Hint: There exists a nonnegative real valued table satisfying the constraints.

Answer

There does not exist such a nonnegative integral valued table, although the marginals are consistent.

Suppose we have a given set of margins for contingency tables.

Want: decide whether there exists a table satisfying the given margins.

This is called the **multi-dimensional integer planar transportation problem** and it can be applied to **data sequrity problem**.

In terms of Optimization, we can rewrite this problem as an **integral feasibility problem**, that is:

Decide whether there exists an integral solution in the system

$$Ax = b, x \ge 0,$$

where $A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^d$.

Observation

Assume the lattice L generated by the columns of A is \mathbb{Z}^d .

Let cone(A) be the cone generated by the columns of A and $P_b = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}.$

We assume that cone(A) is pointed.

$$P_b \neq \emptyset \Leftrightarrow b \in \operatorname{cone}(A).$$

Observation

Let Q be the semigroup generated by the columns a_i of A, that is, $Q = \{\sum_{i=1}^n \alpha_i a_i : \alpha_i \in \mathbb{Z}_+\} \subset \operatorname{cone}(A) \cap \mathbb{Z}^d.$

 $P_b \cap \mathbb{Z}^n \neq \emptyset \Leftrightarrow b \in Q.$

 $(P_b \neq \emptyset) \bigwedge (P_b \cap \mathbb{Z}^n = \emptyset) \Leftrightarrow b \in (\operatorname{cone}(A) \cap \mathbb{Z}^d - Q).$

We study on the set of holes of Q, $H := (\operatorname{cone}(A) \cap \mathbb{Z}^d) - Q$.

Motivation: One of motivations is that once we solve this problem, then we can solve an integer linear feasibility problem efficiently if we vary the right-hand-side b.

Note: Q is normal (i.e. $H = \emptyset$) iff the Hilbert basis of cone(A) is in Q.

Note: Barvinok and Woods showed that: suppose we fix d and n. We can compute all holes of Q in polynomial time using **short rational functions**.

However: It is an **implicit representation** of H, and also their method cannot be implemented at this moment.

Problem: Find an explicit representation of *H*.

Figure 1: Red dots represent holes.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{array} \right).$$

Fundamental holes

Def. The semigroup $Q_{\text{sat}} = \text{cone}(A) \cap L$ is called the saturation of Q (i. e. $Q_{\text{sat}} = Q + H$ or $H = Q_{\text{sat}} - Q$).

Def. We call $a \in H \subset Q_{\text{sat}}$, $a \neq 0$, a **fundamental hole** if there is no other hole $h' \in H$ such that $h - h' \in Q$. Let F be the set of fundamental holes.

Ex. $A = (3 \ 5 \ 7)$. $Q_{sat} = \{0, 1, ...\}$, $Q = \{0, 3, 5, 6, 7, ...\}$, $H = \{1, 2, 4\}$. Among the 3 holes, 1 and 2 are fundamental. For example, $2 \in H$ is fundamental because

$$\{0, 1, \ldots\} \cap \{2, -1, -3, -4, -5, \ldots\} = \{2\}.$$

On the other hand $4 \in H$ is not fundamental because

$$4-1=3\in Q.$$

RIMS

Figure 2: Non-holes, holes and fundamental hole for Example.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{array} \right).$$

Example cont.

 \boldsymbol{Q} has infinitely many holes

$$H = \{ (1,1)^{\mathsf{T}} + \alpha \cdot (1,0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+ \},\$$

out of which only $(1,1)^{\intercal}$ is fundamental,

The **output** from our algorithm looks like:

$$H = \{ (1,1)^{\mathsf{T}} + \alpha \cdot (1,0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+ \}.$$

Computing the holes in f + Q

Let $f \in F$ and $I_{A,f} \in \mathbb{Q}[x_1, \ldots, x_n]$ be the monomial ideal generated by

$$I_{A,f} = \langle x^{\lambda} : \lambda \in \mathbb{Z}_{+}^{n}, f + A\lambda \in (f + Q) \cap Q \rangle.$$

Note. If $\operatorname{cone}(A)$ is pointed, there are only finitely many $\lambda \in \mathbb{Z}_+^n$ such that $f + A\lambda = z$ for each $z \in f + Q$. Thus, by solving $f + A\lambda = z, \lambda \in \mathbb{Z}_+^n$ for all minimal inhomogenuous solutions in $(f + Q) \cap Q$, we can find a finite generating set for $I_{A,f}$.

Theorem. (Hemmecke, Takemura, Y, 2006) While the monomial x^{λ} corresponds to $z = f + A\lambda \in f + Q$, we have $z \in (f + Q) \cap Q$ if and only if $x^{\lambda} \in I_{A,f}$. Thus, the set of holes in f + Q corresponds to the set of standard monomials of the monomial ideal $I_{A,f}$.

Algorithm

Input: $A \in \mathbb{Z}^{d \times n}$.

Output: An explicit representation of *H*.

- 1. Compute the set F of fundamental holes.
- 2. For each of the finitely many $f \in F$, compute all minimal inhomogenous solutions (λ, μ) of

$$\{(\lambda,\mu)\in\mathbb{Z}_{+}^{2n}:f+A\lambda=A\mu\}.$$
(1)

3. From the minimal inhomogenous solutions (λ, μ) of (1), compute an explicit representation of the holes of Q in f + Q.

Computing fundamental holes

The set F of fundamental holes is finite, since it is a subset of the lattice points in

$$P := \left\{ \sum_{j=1}^{n} \lambda_j A_{.j} : 0 \le \lambda_1, \dots, \lambda_n < 1 \right\}.$$

Algorithm. (Computing fundamental holes)

- Compute the minimal integral generating set B of $cone(A) \cap L$.
- Check each $z \in B$ whether it is a fundamental hole or not, that is, compute $B \cap F$.
- Generate all nonnegative integer combinations of elements in B ∩ F that lie in P and check for each such z whether it is a fundamental hole or not.

Example cont

In our example, the lattice $L = \mathbb{Z}^2$. With this, the minimal Hilbert basis B of $cone(A) \cap L$ consists of 5 elements:

$$B = \{(1,0)^{\mathsf{T}}, (1,1)^{\mathsf{T}}, (1,2)^{\mathsf{T}}, (1,3)^{\mathsf{T}}, (1,4)^{\mathsf{T}}\},\$$

out of which only $(1,1)^{\mathsf{T}}$ is a hole.

Being in B, $(1,1)^{\intercal}$ must be a fundamental hole. Thus, $B \cap F = \{(1,1)^{\intercal}\}$.

Note that $2 \cdot (1,1)^{\intercal} = (2,2)^{\intercal} \in Q$ and consequently, there is no other fundamental hole in Q_{sat} , i.e. $F = \{(1,1)^{\intercal}\}$.

Computing minimal inhomogenous solutions

The (finitely many) minimal inhomogeneous solutions to the above linear system can be computed, for example, with 4ti2.

Example cont. Let $f = (1,1)^{\mathsf{T}}$ and consider $(f+Q) \cap Q$. The linear system to solve is

Example cont

4ti2 gives the following 5 minimal inhomogeneous solutions (λ, μ) to system (1):

Thus, we have $\{(2,3)^{\intercal}, (2,4)^{\intercal}, (2,5)^{\intercal}, (3,9)^{\intercal}\}$.

Example cont

Construct the generators of the monomial ideal $I_{A,f}$ by finding all representations of the form $z = f + A\lambda, \lambda \in \mathbb{Z}_+^4$ for each z in $(f + Q) \cap Q$ for each $z \in \{(2,3)^\intercal, (2,4)^\intercal, (2,5)^\intercal, (3,9)^\intercal\}$.

$$z = f + A\lambda$$

$$(2,3)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,1,0,0)^{\mathsf{T}}$$

$$(2,4)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,1,0)^{\mathsf{T}}$$

$$(2,5)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,0,1)^{\mathsf{T}}$$

$$(3,9)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,0,4)^{\mathsf{T}}$$

Example

Thus, we get the monomial ideal

$$I_{A,f} = \langle x_2, x_3, x_4 \rangle,$$

whose set of standard monomials is $\{x_1^{\alpha} : \alpha \in \mathbb{Z}_+\}$.

Thus, the set of holes in $f+Q\ {\rm is}$

$$\{f + \alpha A_1 : \alpha \in \mathbb{Z}_+\} = \{(1, 1)^{\mathsf{T}} + \alpha(1, 0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+\}$$

Applications to contingency tables

Sequencial Importance Sampling (SIS)

For a formal definition of SIS, see (Chen, 2001), (Chen, Diaconis, Holmes, Liu 2005), (Chen, Dinwoodie, Sullivant, 2006), etc., etc.

How does SIS work?

For example, suppose we have the following table.

7	5	1	13
5	10	6	21
2	6	8	16
14	21	15	50

Now we consider τ , all integral valued tables with the same column sums c_i and row sums r_i for i = 1, 2, 3.

Example cont...

We want to sample a table from τ . We pick an integer from $[0, \min\{8, 9\}]$ with some distribution (say a uniform distribution). For example, we picked 5.

Then update r_1 and c_1 as follows:

5	?	?	8
?	?	?	21
?	?	?	16
9	21	15	50

Example cont...

We do this process untill we fill up all cells. Then we get a table:

5	7	1	13
7	8	6	21
2	6	8	16
14	21	15	50

Questions: How can we choose a sample which does not end up a non-consistant table? Relations between holes and samples.

SIS and holes

Suppose $(T_{i_1,\dots,i_m}) \in \tau$ be a $d_1 \times \dots \times d_m$ table and we set:

$$b = Ax,$$

where
$$x = (T_{1,1,\dots,1}, T_{1,1,\dots,2}, \dots, T_{d_1,d_2,\dots,d_m})$$
 and $b = (\sum_{i_1} T_{i_1,\dots,i_m}, \dots, \sum_{i_m} T_{i_1,\dots,i_m}).$

Thus we can rewrite:

$$b = A_1 x_1 + A_2 x_2 + \dots + A_n x_n, \ x_i \in \mathbb{Z}_+.$$

To get a table satisfying the given marginals, we take a path

$$A_1x_1 \to A_1x_1 + A_2x_2 \to \cdots \to A_1x_1 + A_2x_2 + \cdots + A_nx_n.$$

From the view of Q

Taking a sample via SIS can be viewed as a path from the origin to $b \in Q$.

SIS and holes

Suppose Q is not normal (such as three-way tables).

To sample via SIS, we need to check if it is possible to reach b from the current point $s = A_1y_1 + A_2y_2 + \cdots + A_ny_n$.

To check there is a path from s to b by adding $z_i \in \mathbb{Z}_+$ to y_i for some i:

- If $b s \in Q$, then there is a path.
- If $b s \in H$, then we reject.

Thus knowing H, one might be speed up some computation of SIS. (we need to investigate how practical our algorithm is).

Finiteness of holes of Q

Theorem: (Takemura and Y, 2006): Suppose we fix d and n. Then, there is a polynomial time algorithmm to decide whether the set of holes H of Q for a matrix A is finite or not.

Examples: The matrix for defining $2 \times 2 \times 2 \times 2$ tables with 2-marginals has finitely many holes.

 $2 \times 2 \times 2 \times 2$ tables with 2-marginals and 3-marginal i.e. [12][13][14][123] and with levels of 2 on each node has infinitely many holes.

Prop. [Takemura and Y., 2006]

 $3 \times 4 \times 7$ table with 2-marginals has infinite number of holes.

Sketch of pf.

					sum
	С	0	0	0	C
	0	0	0	0	0
	0	0	0	0	0
sum	С	0	0	0	С

Table 1: the 7-th 3×4 slice is uniquely determined by its row and its column sums. c is an arbitrary positive integer. Thus for each choice of positive integer the beginning $3 \times 4 \times 6$ part remains to be a hole. Since the positive integer is arbitrary, $3 \times 4 \times 7$ table has infinite number of holes.

Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem 6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality (i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not known only for the following three cases:

$$5 \times 5 \times 3$$
, $5 \times 4 \times 3$, $4 \times 4 \times 3$.

Note. $4 \times 4 \times 3$ is solved! We want to decide whether semigroups of these tables above are normal or not.

Also we want to decide whether $3 \times 4 \times 6$ table with 2-margins have a finite number of holes.

Questions?

A preprint is available at arxiv:

http://arxiv.org/abs/math.CO/0607599

Thank you....