
Short rational generating functions and their applications to integer

programming

Kevin Woods

Department of Mathematics

University of California, Berkeley

Berkeley, CA 94720-3840

kwoods@math.berkeley.edu

Ruriko Yoshida

Department of Mathematics

Duke University

Durham, NC 27708-0320

ruriko@math.duke.edu

Abstract

In this paper, we provide an overview of rational generating function tools for encoding integer points
inside a rational polyhedron, and we examine their applications to solving integer programming problems.

1 Introduction

In the 1980’s, H.W. Lenstra, Jr. developed an algorithm to detect integer points in a rational polyhedron
using the LLL-algorithm [17, 20], and this algorithm runs in time polynomial in the input size if we fix
the dimension. Lenstra used this algorithm to show that integer programming problems with a fixed
number of variables can be solved in polynomial time. A later algorithm of similar structure, by Lovász
and Scarf [21], was implemented by Cook, et al. [9]. In addition, Aardal and collaborators [1, 2, 3] have
written fairly effective modifications of the LLL-procedure for testing integer feasibility. In the 1990’s,
based on work by the geometers Brion, Khovanski, Lawrence, and Pukhlikov, Barvinok discovered an
algorithm to count integer points in rational polytopes, and this algorithm also runs in polynomial time if
we fix the dimension [5, 6]. The idea of the algorithm is to encode all the integer points inside a rational
polyhedron into a rational generating function. In particular, if P ⊂ Rd is a rational polyhedron, define
the generating function

f(P ;x) =
X

s∈P∩Zd

xs,

where xs denotes xs1

1 · · ·x
sd

d with s = (s1, . . . , sd). After computing f(P ;x) as a rational function, we
evaluate |P ∩ Zd| = f(P ; 1, . . . , 1).

Example 1. Suppose P is the one-dimensional polytope [0, N]. Then f(P ; x) = 1 + x + x2 + · · · + xN ,

f(P ; x) can be represented by the rational function 1−xN+1

1−x
, and f(P ; 1) = N + 1, the number of integer

points in P .

Note that the rational function representation of f(P ;x) in Example 1 is “short.” In general, the
number of terms in the representation will be bounded by a polynomial in the input size. Also note that
substituting x = 1 yields a denominator equal to zero in the rational function, so some analytic technique
must be used to evaluate f(P ; 1). In this particular case, we could take the limit as x approaches 1 and
apply l’Hospital’s rule. In general, we must use more complicated residue calculus [5].

Shortly after Barvinok introduced his algorithm, Dyer and Kannan [16] showed that a particular step
of his counting algorithm, which originally relied on Lenstra’s result, could be replaced by a short-vector
computation using the LLL-algorithm. This result gives a new proof that integer programming problems
with a fixed number of variables can be solved in polynomial time: using binary search, one can turn

1

Barvinok’s counting oracle into an algorithm that solves integer programming problems. This algorithm
was proposed by Barvinok in [6]. We call this integer programming algorithm the BBS algorithm.

In this report, we will provide a brief overview of how to encode the integer points inside a given
polyhedron into a short rational generating function (Section 2), and then we will survey applications to
solving integer programming problems (Section 3).

2 Computing short rational generating functions

In 1993, Barvinok [5] gave an algorithm that, given a rational polyhedron P ⊂ Rd, computes f(P ;x) as
a rational function in polynomial time (when the dimension of the polyhedron is fixed). In this section,
we outline the steps of Barvinok’s algorithm. For a more lengthy and detailed exposition, see [6].

Let {c1, . . . , cd} be a basis for the lattice Zd, and let β1, . . . , βd ∈ Q be given. We define the rational
unimodular cone K = {x ∈ Rd : ci ·x ≤ βi, for all i}, where a ·b is the standard dot product. Computing
the generating function of a unimodular cone is “easy.” In fact, if {u1, . . . , ud} is the (negative) dual
basis of Zd such that

ui · cj =



−1, if i = j
0, if i 6= j

,

and if v = −
Pd

i=1
bβicui, then (by Lemma 4.1 of [6])

f(K;x) =
xv

(1 − xu1) · · · (1 − xud)
. (1)

Example 2. Suppose we have a rational unimodular cone K ⊂ R2, such that

K = {(x1, x2) ∈ R
2 : x1 ≤ 4, 2x1 + x2 ≤ 10}.

In our example, c1 = (1, 0) and c2 = (2, 1) form a basis of Z2. Then, we have that u1 = (−1, 2),
u2 = (0, −1), and v = − [4(−1, 2) + 10(0, −1)] = (4, 2). Therefore

f(K; x1, x2) =
x4

1x
2
2

(1 − x−1

1 x2
2)(1 − x−1

2)
.

The idea of Barvinok’s algorithm, then, is to reduce the case of computing f(P ;x) to the case of
computing the generating functions for a collection of unimodular cones. We do this in three steps: first
reduce to the case of general rational cones, then to the case of simplicial cones (rational cones with
exactly d extreme rays), and then finally to unimodular cones. If v is a vertex of P , then define the
supporting cone, cone(P, v), of P at v, as follows. Suppose that P is defined by P = {x ∈ Rd : ci · x ≤
βi, for i = 1, . . . , m}, for some ci ∈ Qd, βi ∈ Q. For a vertex, v, of P , let Iv = {i : ci · v = βi}, and
define

cone(P, v) = {x ∈ R
d : ci · x ≤ βi, for i ∈ Iv}.

Then the following theorem from [8] allows us to compute f(P,x) by computing the generating functions
of the cones cone(P, v), where v is a vertex of P .

Theorem 3. (Brion’s Theorem) Let P be a rational polyhedron. Then

f(P ;x) =
X

v

f
`

cone(P, v);x
´

,

where the sum runs over all vertices v of P .

2

Example 4. Let P be the one-dimensional polytope [0, N]. Then v0 = 0 and v1 = N are the vertices of
P , cone(P, v0) = [0,∞) and cone(P, v1) = (−∞, N], and so

f(P ; x) = f(cone(P, v0); x) + f(cone(P, v1); x) =
1

1 − x
+

xN

1 − x−1
=

1 − xN+1

1 − x
.

Note that, since the dimension d is fixed, we may compute the vertices of P in polynomial time (see
[22] for details). Next, by triangulating these cones, we reduce to the case of simplicial cones. There
are efficient algorithms, when the dimension is fixed, to perform triangulations (see [4, 19] for details).
Finally, let K be a simplicial cone. The essential contribution of Barvinok [5] was to show that we can
decompose K into a signed collection of unimodular cones. To be precise, given a set A ⊂ Rd, define the
indicator function, [A] : Rd → R, of A by

[A](x) =



1, if x ∈ A
0, if x /∈ A

.

Then we have the following theorem from [5].

Theorem 5. Fix d. There is a polynomial time algorithm which, given a rational simplicial cone K ⊂ Rd,
computes rational unimodular cones Ki and signs εi ∈ {−1, 1} such that

[K] =
X

i

εi[Ki].

Therefore, we have that

f(K,x) =
X

i

εif(Ki,x).

Example 6. Let K = co
`

(1, 0), (1, N)
´

(that is, the cone generated by (1, 0) and (1, N)). Then K1 =
co
`

(1, 0), (0, 1)
´

, K2 = co
`

(1, N), (0, 1)
´

, and K3 = co
`

(1, N)
´

are unimodular, with [K] = [K1]− [K2]+
[K3]. Therefore

f(K; x, y) =
1

(1 − x)(1 − y)
−

1

(1 − xyN)(1 − y)
+

1

1 − xyN
.

Using Theorem 3, triangulation, Theorem 5, and (1), we may now compute the generating function
for any rational polyhedron, as the following theorem states.

Theorem 7 (Theorem 4.4 in [6]). Assume d, the dimension, is fixed. Given a rational polyhedron
P ⊂ Rd, the generating function f(P ;x) can be computed in polynomial time in the form

f(P ;x) =
X

i∈I

εi

xui

d
Q

j=1

(1 − xvij)

, (2)

where I is a polynomial-size indexing set, and where εi ∈ {1,−1} and ui, vij ∈ Zd for all i and j.

Furthermore, we can use this generating function to count the number of integer points in a rational
polytope, by computing f(P ; 1, 1, . . . , 1). Note that, while f(P ;x) itself is analytic at (1, 1, . . . , 1), each
of the fractions in the sum has a pole there. Thus, we can not directly substitute 1 for each variable, but
we can compute the value (in polynomial time for fixed dimension) via residue calculus, as in [5].

3 Applications to integer programming

Throughout this section, we will assume that the number of variables d is fixed. Suppose we have the
following integer programming problem: given A ∈ Zm×d, b ∈ Zm, c ∈ Zd,

maximize c · x subject to Ax ≤ b, x ∈ Z
d. (3)

There are several algorithms to solve the integer programming problem (3) using short rational functions
[12, 13, 14]. In this section, we will provide outlines of two of these algorithms: the BBS algorithm and
the digging algorithm. These are currently implemented in the second release of the computer software
LattE (see [11, 12, 15]).

3

3.1 Barvinok’s binary search algorithm

We start with the most straightforward integer programming algorithm. It is an immediate consequence
of the counting algorithm via short rational functions, with no extra tools needed: using binary search,
one can turn any feasibility or counting oracle into an algorithm that solves Problem (3). This idea was
proposed in [6]:

Algorithm 8. (BBS algorithm)
Input: A ∈ Zm×d, b ∈ Zm, c ∈ Zd.
Output: The optimal value, O, of max{c · x : Ax ≤ b, x ∈ Zd}.

1. Let P = {x ∈ Rd : Ax ≤ b} be the feasible region for the linear program. Initialize M to be
max{c · x : x ∈ P}, the maximum of the linear program, and m to be min{c · x : x ∈ P}. Then
m ≤ O ≤ M (assuming a feasible integer solution exists).

2. Use Barvinok’s algorithm to count q =
˛

˛P ∩ Zd
˛

˛. If q = 0, then there is no feasible integer solution.
If q is nonzero, then perform the following loop.

3. While M > m do (at each iteration, we will know that m ≤ O ≤ M)

Set N = dM+m

2
e.

Using Barvinok’s algorithm compute q =
˛

˛P ∩ {x ∈ Rd : N ≤ c · x ≤ M} ∩ Zd
˛

˛ .

If q > 0, then N ≤ O ≤ M and we repeat the loop with m := N and M := M .

If q = 0, then m ≤ O < N and we repeat the loop with m := m and M := N − 1.

4. Return M as the optimal value.

3.2 Digging algorithm

An alternative integer programming algorithm, which also uses rational generating functions, is the
digging algorithm. This algorithm is an extension of a heuristic proposed by Lasserre [18], and it begins
at the highest possible value for the optimum of the integer program, checks to see if there is a feasible
solution giving that value, and if not continually digs to check the next highest possible value.

For the integer programming problem (3), let P = {x ∈ Rd : Ax ≤ b} be the feasible region for the
linear program. Given the generating function f(P ;x) as in (2), perform the substitution xk = tck , so
that

f(P ; tc1 , · · · ; tcd) =
X

α∈P∩Zd

tc·α =
X

i∈I

εi

tc·ui

d
Q

j=1

(1 − tc·vij)

. (4)

For simplicity, we assume that c · vij 6= 0, for any i, j. Furthermore, we may assume that c · vij < 0
by performing the operation 1/(1 − tv) = −t−v/(1 − t−v), as necessary.

The optimum value of the integer program is the degree of f(P ; tc1 , · · · , tcd), which we will compute
by examining the Laurent series expressions of each of the terms in the sum, which are of the form

εit
c·ui

d
Y

j=1

(1 + tc·vij + t2c·vij + t3c·vij + · · ·). (5)

Algorithm 9. (Digging algorithm)
Input: A ∈ Zm×d, b ∈ Zm, c ∈ Zd.
Output: The optimal value of max{c · x : Ax ≤ b, x ∈ Zd}.

1. Let P = {x ∈ Rd : Ax ≤ b}. Using Theorem 7 and substitution, compute the rational function
expression in the equation (4). Apply the appropriate algebraic identities so that c · vij < 0 for all
i, j.

2. If M = maxi c · ui, then the degree of f(P ; tc1 , · · · , tcd) is at most M (since all of the c · vij are
negative). Use the formula (5) to compute the coefficient of tM in f(P ; tc1 , · · · , tcd).

4

3. If the coefficient of tM is nonzero, then M is the optimal value of the integer program and we
are done. Otherwise, compute the coefficient of the next highest possible degree. Continue until a
nonzero coefficient is found.

Example 10. Suppose we have the integer programming problem

maximize 100x + 90y subject to x + y ≤ 100, x ≤ 50, x, y ≥ 0, x, y ∈ Z
d.

Then the associated rational generating function for the feasible region of the integer program is

1

(1 − x1)(1 − x2)
+

x50
1

(1 − x−1

1)(1 − x2)
+

x100
2

(1 − x−1

2)(1 − x1x
−1

2)
+

x50
1 x50

2

(1 − x−1

2)(1 − x−1

1 x2)
.

We apply the monomial substitution in (4) and apply the appropriate algebraic identities, and we get:

t−190

(1 − t−100)(1 − t−90)
−

t4910

(1 − t−100)(1 − t−90)
−

t8990

(1 − t−90)(1 − t−10)
+

t9500

(1 − t−90)(1 − t−10)
.

Then, using Equation (5) and the fact that the coefficient of t9500 is nonzero, we find that the integer
programming optimum is 9500.

3.3 Comparison of BBS and digging algorithms

How do these two algorithms compare? The Barvinok binary search algorithm is guaranteed to run
in polynomial time if we fix d. However, it is usually slow in practice, because the Barvinok counting
algorithm must be run a number of times. The digging algorithm, on the other hand, is not guaranteed
to run in polynomial time with fixed d. Nevertheless, it is often quite efficient in practice, because the
number of iterations in Step 3 of Algorithm 9 is usually small and Barvinok’s algorithm is called only once
(even if we vary cost functions, we do not have to re-run Barvinok’s algorithm). This algorithm works well
for small dimensions and polytopes with a small number of vertices. For example, the digging algorithm
solved some hard knapsack problems which the mixed-integer programming solver CPLEX version 6.6.
could not [13]. However, for d on the order of 30, this algorithm becomes quite slow. If the input
polytope has a large number of vertices, the integer programming problem (3) can be solved by the
following: First we find a vertex of the polytope which is an optimal solution for the linear relaxation of
the problem (3) via linear programming. Then, we apply the digging calculation to the single tangent
cone of the polytope at the vertex (see details in [13]).

References

[1] Aardal, K. and Lenstra, A.K. Hard equality constrained integer knapsacks Preliminary version in
W.J. Cook and A.S. Schulz (eds.), Integer Programming and Combinatorial Optimization: 9th
International IPCO Conference, Lecture Notes in Computer Science vol. 2337, Springer-Verlag,
2002, 350–366.

[2] Aardal, K. Weismantel, R., and Wolsey, L.A. Non-standard approaches to integer programming.
Workshop on Discrete Optimization, DO’99 (Piscataway, NJ). Discrete Appl. Math. 123, 2002, no.
1-3, 5–74.

[3] Aardal, K., Hurkens, C.A.J., and Lenstra, A.K. Solving a linear diophantine equations with lower
and upper bounds on the variables. In R.E Bixby, E.A Boyd, R.Z. Rios-Mercado (eds) “Integer
Programming and Combinatorial Optimization”, 6th International IPCO conference. Lecture notes
in Computer Science 1412 Springer Verlag, 1998, 229-242.

[4] Aurenhammer, F. and Klein, R. Voronoi diagrams. In Handbook of computational geometry. (Ed.
J.-R. Sack and J. Urrutia). Amsterdam, Netherlands: North-Holland, 2000, 201–290.

5

[5] Barvinok, A. Polynomial time algorithm for counting integral points in polyhedra when the dimension
is fixed. Math of Operations Research 19, 1994, 769–779.

[6] Barvinok, A. and Pommersheim, J. An algorithmic theory of lattice points in polyhedra. New Per-

spectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 91–147, Math. Sci. Res. Inst. Publ.
38, Cambridge Univ. Press, Cambridge, 1999.

[7] Barvinok, A. and Woods, K. Short rational generating functions for lattice point problems. J. Amer.
Math. Soc. 16, 2003, 957-979.

[8] Brion, M. Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. (4), 21, 1988,
653–663.

[9] Cook, W., Rutherford, T., Scarf, H.E., and Shallcross, D. An implementation of the generalized
basis reduction algorithm for integer programming. ORSA Journal of Computing, 5, 1993, 206–212.

[10] Cornuéjols, G., Urbaniak, R., Weismantel, R., and Wolsey, L.A. Decomposition of integer programs
and of generating sets. R. E. Burkard, G. J. Woeginger, eds., Algorithms–ESA 97. Lecture Notes in
Computer Science 1284, Springer-Verlag, 1997, 92–103.

[11] De Loera, J.A, Hemmecke, R., Tauzer, J., and Yoshida, R. Effective lattice point counting in rational
convex polytopes. The Journal of Symbolic Computation, 38, 2004, no. 4, p1273 – 1302

[12] De Loera, J.A, Haws, D., Hemmecke, R., Huggins, P., Sturmfels, B., and Yoshida, R. Short rational
functions for toric algebra and applications. The Journal of Symbolic Computation, 38, 2004, no. 2,
p959–973.

[13] De Loera, J.A, Haws, D., Hemmecke, R., Huggins, P., and Yoshida, R. A computational study of
integer programming algorithms based on Barvinok’s rational functions. To appear in the Journal of
Discrete Optimization.

[14] De Loera, J.A, Haws, D., Hemmecke, R., Huggins, P., and Yoshida, R. Three kinds of integer pro-
gramming algorithms based on Barvinok’s rational functions. Integer Programming and Combinato-
rial Optimization: 10th International IPCO Conference, Springer, (D. Bienstock and G. Nemhauser
eds.) 2004, 244 – 255.

[15] De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., and Yoshida, R. A user’s guide for
LattE v1.1. 2003, software package LattE is available at http://www.math.ucdavis.edu/∼latte/

[16] Dyer, M. and Kannan, R. On Barvinok’s algorithm for counting lattice points in fixed dimension.
Math of Operations Research 22, 1997, 545– 549.

[17] Grötschel, M., Lovász, L., and Schrijver, A. Geometric algorithms and combinatorial optimization.
Second edition. Algorithms and Combinatorics, 2, Springer-Verlag, Berlin, 1993.

[18] Lasserre, J.B. Integer programming, Barvinok’s counting algorithm and Gomory relaxations. Oper-
ations Research Letters, 32, 2003, 133–137.

[19] Lee, C.W. Subdivisions and triangulations of polytopes. In Handbook of Discrete and Computational

Geometry, 271-290, (Goodman J.E. and O’Rourke J. eds.), CRC Press, New York, 1997.

[20] Lenstra, H.W. Integer programming with a fixed number of variables. Mathematics of Operations
Research, 8, 1983, 538–548.

[21] Lovász, L. and Scarf, H.E. The generalized basis reduction algorithm. Math. of Operations Research,
17, 1992, 751–764.

[22] Schrijver, A. Theory of linear and integer programming. Wiley-Interscience, 1986.

[23] Thomas, R. Algebraic methods in integer programming. Encyclopedia of Optimization (eds: C.
Floudas and P. Pardalos), Kluwer Academic Publishers, Dordrecht, 2001.

6

