# Polytopes for computing <br> Markov degree of the three-state toric homogeneous Markov chain model 

Ruriko Yoshida<br>Dept. of Statistics University of Kentucky

Joint work with A. Tamekura, D. Haws, and A. Martín del Campo
polytopes.net

## Discrete time Markov chain

We consider a discrete time Markov chain $X_{t}$, with $t=1, \ldots, T(T \geq 3)$, over a finite space of states $[S]=\{1, \ldots, S\}$.


## Toric homogeneous Markov chain

Let $\mathbf{w}=\left(s_{1}, \ldots, s_{T}\right)$ be a path of length $T$ on states $[S]$, which is sometimes written as $\omega=\left(s_{1} \cdots s_{T}\right)$ or simply $\omega=s_{1} \cdots s_{T}$. We are interested in Markov bases of toric ideals arising from the following statistical models

$$
\begin{equation*}
p(\omega)=\gamma_{s_{1}} \beta_{s_{1}, s_{2}} \cdots \beta_{s_{T-1}, s_{T}} \tag{1}
\end{equation*}
$$

where $\gamma_{s_{i}}$ indicates the probability of the initial state, and $\beta_{s_{i}, s_{j}}$ are the transition probabilities from state $s_{i}$ to $s_{j}$. The model (1) is called a toric homogeneous Markov chain (THMC) model.

Problem We want to understand a Markov basis under THMC model as $T \rightarrow \infty$.

## Four models

We refer to them as Model (a), Model (b), Model (c), and Model (d), according to the following:
(a) THMC model (1)
(b) THMC model without initial parameters.
(c) THMC model without self-loops: $\beta_{s_{i}, s_{j}}=0$ whenever $s_{i}=s_{j}$.
(d) THMC model without initial parameters and without self-loops, i.e., both (b) and (c) are satisfied

## Design matrix for Model (a)

Ordering $[S] \cup[S]^{2}$ and $[S]^{T}$ lexicographically, the matrix $A^{(a)}$ is:

|  | - | ت | İ | İ | İ | İ | - | ส్ন | 少 | त | İ | $\underset{\sim}{\tilde{A}}$ | 少 | N | ส | జี |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 11 | 3 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 12 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 21 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 |
| 22 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 |

## Design matrix for Model (b)

Ordering $[S]^{2}$ and $[S]^{T}$ lexicographically with $S=2$ and $T=4$ the matrix $A^{(b)}$ is:

|  | 三 | \# | 긐 | I | च | च | च | జ్ส | g | \# | İ | สี่ | ב | ฐี่ | むี | ฐี่ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 3 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 12 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 21 |  | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 |
| 22 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 |  |

## Example for Model (d)

The state graph $G(W)$ of $W=\{(12132),(12321)\}$. Also the state graph $G(\bar{W})$ where $\bar{W}=\{(13212),(21232)\}$.

Test statistics for both sets of paths is $[2,1,2,1,0,2]$.


## Two-state THMC

Hara and Takemura (2010) provided a full description of the Markov bases for the THMC model (on Model (a) and Model (b)) in two states (i.e. when $S=2$ ) that does not depend on $T$.

Inspired by their work, we study the algebraic and polyhedral properties of the Markov bases of the three-state THMC model for any time $T>3$.

We hoped we could have the same result for the three-state THMC model without initial parameters and without self-loops (however not yet!).

## Recall Markov basis

Suppose $P=\left\{x \in \mathbb{R}^{d} \mid A x=b, x \geq 0\right\} \neq \emptyset$ and let $M$ be a finite set such that $M \subset\left\{x \in \mathbb{Z}^{d} \mid A x=0\right\}$.

We define the graph $G_{b}$ such that:

- Nodes of $G_{b}$ are all the lattice points inside of $P$.
- We draw an undirected edge between a node $u$ and a node $v$ iff $u-v \in M$.


## Definition :

$M$ is called a Markov basis if $G_{b}$ is a connected graph for all $b$.

## Good news

Theorem: For any $T \geq 4$, a minimum Markov basis for the toric ideal $I_{A^{(d)}}$, where $A^{(d)}$ is the design matrix under Model (d), consists of binomials of degree less than or equal to $d=6$.

We used polyhedral geometry to prove this theorem.
Here we focus on Model (d) and $S=3$.
Look closely at $P^{(d)}$, the convex hull generated by the columns of the design matrix for Model (d).

## Ruriko Yoshida

For $k \in \mathbb{N}$, we define the $k$-th dilation of $P$ as $k P:=\{k \mathbf{x} \mid \mathbf{x} \in P$,$\} . A$ point $\mathbf{x} \in P$ is a vertex if and only if it can not be written as a convex combination of points from $P \backslash\{\mathbf{x}\}$.

The cone of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\} \subset \mathbb{R}^{n}$ is defined as

$$
\operatorname{cone}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right):=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}=\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}, \lambda_{i} \geq 0\right\}
$$

Integer lattice $L:=\mathbb{Z} A=\left\{n_{1} a_{1}+\cdots+n_{m} a_{m} \mid n_{i} \in \mathbb{Z}\right\}$.
The semigroup $S:=\mathbb{N} A:=\left\{n_{1} a_{1}+\cdots+n_{m} a_{m} \mid n_{i} \in \mathbb{N}\right\}$.

Let $P^{(d)}$ be the convex hull generated by the columns of the design matrix for Model (d), let $C^{(d)}$ be the cone generated by the columns of the design matrix for Model (d), let $L^{(d)}$ be the lattice generated by the columns of the design matrix for Model (d), and let $S^{(d)}$ be the semigroup generated by the columns of the design matrix for Model (d).

Prop: $k P^{(d)}=C^{(d)} \cap\left\{\sum_{i=1}^{n} x_{i}=k(T-1)\right\}$ and $\bigcup_{k \in \mathbb{Z}_{+}}\left(k P^{(d)} \cap \mathbb{Z}^{n}\right)=$ $C^{(d)} \cap L^{(d)}$.

Note: A semigroup is normal if and only if the semigroup is equal to the intersection between the cone and the lattice.

Theorem: We consider Model (d) and $S=3$. The semigroup generated by the columns of the design matrix $A^{(d)}$ is normal for $T \geq 5$.

One notices that the set of columns of $A^{(d)}$ is a graded set.
Theorem 13.14 in [Sturmfels 1996] Let $A \subset \mathbb{Z}^{d}$ be a graded set such that the semigroup generated by the elements in $A$ is normal. Then the toric ideal $I_{A}$ associate with the set $A$ is generated by homogeneous binomials of degree at most $d$.

Theorem: For any $T \geq 4$, a minimum Markov basis for the toric ideal $I_{A^{(d)}}$, where $A^{(d)}$ is the design matrix under Model (d), consists of binomials of degree less than or equal to $d=6$.

## Polyhedral geometry

Theorem Let $S=3$. The number of vertices of $P^{(d)}$ is bounded by some constant $C$ which does not depend on $T$.

Also we found their hyperplane representations.
Theorem For $T \geq 5$, the number of facets is 24 and we described explicitely the these 24 facet description of $P^{(d)}$ depend on $T \bmod 6$.

The number of Hilbert basis elements (normaliz) and f-vectors (Polymake) for Model (d) where $S=3$. The running time of normaliz was under two seconds for all data sets.

| T | $\# \mathrm{HB}$ | $f_{0}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 20 | 20 | 69 | 90 | 51 | 12 |
| 5 | 30 | 27 | 114 | 167 | 102 | 24 |
| 6 | 48 | 24 | 111 | 176 | 111 | 24 |
| 7 | 66 | 41 | 144 | 189 | 108 | 24 |
| 8 | 96 | 42 | 171 | 230 | 123 | 24 |
| 9 | 123 | 45 | 186 | 245 | 126 | 24 |
| 10 | 166 | 56 | 201 | 252 | 129 | 24 |
| 11 | 207 | 63 | 216 | 257 | 126 | 24 |
| 12 | 264 | 54 | 189 | 236 | 123 | 24 |
| 13 | 320 | 77 | 246 | 279 | 132 | 24 |
| 14 | 396 | 54 | 189 | 236 | 123 | 24 |
| 15 | 468 | 63 | 216 | 257 | 126 | 24 |

Here we summarize all the inequalities in their original form and in their inhomogeneous form, that is using the equality $n(T-1)=x_{12}+x_{13}+$ $x_{21}+x_{23}+x_{31}+x_{32}$ where $n \geq 1$. Index are ordered by lexicographically. Permute on $[S]$.

For any $T \geq 5$, a row vector equivalent to

$$
\mathbf{c}=[1,0,0,0,0,0] \cdot x \geq 0
$$

For any $T \geq 5$, a row vector equivalent to

$$
\mathbf{c}=[T, T,-(T-2), 1,-(T-2), 1)] \cdot x \geq 0
$$

inhomogeneous

$$
\mathbf{c}=[1,1,-1,0,-1,0] \cdot x \geq-n
$$

Ruriko Yoshida
For any $T$ odd, $T \geq 5$, a row vector equivalent to

$$
\mathbf{c}=[1,1,-1,-1,1,1] \cdot x \geq 0
$$

For any $T \geq 4$ of the form $T=3 k+1, k \geq 1$, a row vector equivalent to

$$
\mathbf{c}=[2,-1,-1,-1,2,2] \cdot x \geq 0
$$

For any $T \geq 5$ of the form $T=3 k+2, k \geq 1$, a row vector equivalent to

$$
\mathbf{c}=[2 k+1,-k,-k,-k, 2 k+1,2 k+1] \cdot x \geq 0
$$

inhomogeneous

$$
(3-n)\left(x_{12}+x_{31}+x_{32}\right)-n\left(x_{13}+x_{21}+x_{23}\right) \geq-n
$$

Ruriko Yoshida
For any $T \geq 6, T$ :even, a row vector equivalent to

$$
\left[\frac{3}{2} T-1, \frac{T}{2},-\frac{T}{2}+1,-\frac{T}{2}+1,-\frac{T}{2}+1, \frac{T}{2}\right] \cdot x \geq 0
$$

inhomogeneous

$$
3 x_{12}+x_{13}-x_{21}-x_{23}-x_{31}+x_{32} \geq-n
$$

For $T=6 k+3$, a row vector equivalent to

$$
[5 k+2,2 k+1,-4 k-1,-k,-k, 2 k+1] \cdot x \geq 0
$$

inhomogeneous
$(6-n) x_{12}+(3-n) x_{13}-(3+n) x_{21}+(3-n) x_{32}-n x_{23}-n x_{31} \geq-2 n$.

Ruriko Yoshida
For $T=6 k$, a row vector equivalent to

$$
[10 k-1,4 k,-8 k+2,-2 k+1,-2 k+1,4 k] \cdot x \geq 0
$$

inhomogeneous

$$
(6-n) x_{12}+(3-n) x_{13}-(3+n) x_{21}+(3-n) x_{32}-n x_{23}-n x_{31} \geq-2 n
$$

## Big conjecture

On the experimentations we ran, we found evidence that more should be true.

Conjecture Fix $S \geq 3$; then, for every $T \geq 4$, there is a Markov basis for the toric ideal $I_{A^{(d)}}$ consisting of binomials of degree at most $S-1$, and there is a Gröbner basis with respect to some term ordering consisting of binomials of degree at most $S$.

Despite the computational limitations (the number of generators grows exponentially when $T$ grows, ) we were able to test this conjecture using the software 4ti2 for $T=4,5,6$ with $S=3$ and $T=4,5$ with $S=4$.

Problem Provide a full description of the Markov bases for the THMC model (on Model (d)) in three states (i.e. when $S=3$ ) that does not depend on $T$.

## Question??

http://arxiv.org/abs/1204.3070

