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Discrete time Markov chain

We consider a discrete time Markov chain Xt, with t = 1, . . . , T (T ≥ 3),
over a finite space of states [S] = {1, . . . , S}.
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Toric homogeneous Markov chain

Letw = (s1, . . . , sT ) be a path of length T on states [S], which is sometimes
written as ω = (s1 · · · sT ) or simply ω = s1 · · · sT . We are interested in
Markov bases of toric ideals arising from the following statistical models

p(ω) = γs1βs1,s2 · · ·βsT−1,sT . (1)

where γsi indicates the probability of the initial state, and βsi,sj are the
transition probabilities from state si to sj. The model (1) is called a toric
homogeneous Markov chain (THMC) model.

Problem We want to understand a Markov basis under THMC model as
T → ∞.
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Four models

We refer to them as Model (a), Model (b), Model (c), and Model (d),
according to the following:

(a) THMC model (1)

(b) THMC model without initial parameters.

(c) THMC model without self-loops: βsi,sj = 0 whenever si = sj.

(d) THMC model without initial parameters and without self-loops, i.e., both
(b) and (c) are satisfied
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Design matrix for Model (a)

Ordering [S] ∪ [S]2 and [S]T lexicographically, the matrix A(a) is:

11
11

11
12

11
21

11
22

12
11

12
12

12
21

12
22

21
11

21
12

21
21

21
22

22
11

22
12

22
21

22
22

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
11 3 2 1 1 1 0 0 0 2 1 0 0 1 0 0 0
12 0 1 1 1 1 2 1 1 0 1 1 1 0 1 0 0
21 0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0
22 0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3
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Design matrix for Model (b)

Ordering [S]2 and [S]T lexicographically with S = 2 and T = 4 the
matrix A(b) is:
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11 3 2 1 1 1 0 0 0 2 1 0 0 1 0 0 0
12 0 1 1 1 1 2 1 1 0 1 1 1 0 1 0 0
21 0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0
22 0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3
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Example for Model (d)

The state graph G(W ) of W = {(12132), (12321)}. Also the state graph
G(W ) where W = {(13212), (21232)}.

Test statistics for both sets of paths is [2, 1, 2, 1, 0, 2].
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Two-state THMC

Hara and Takemura (2010) provided a full description of the Markov bases

for the THMC model (on Model (a) and Model (b)) in two states (i.e.
when S = 2) that does not depend on T .

Inspired by their work, we study the algebraic and polyhedral properties of
the Markov bases of the three-state THMC model for any time T > 3.

We hoped we could have the same result for the three-state THMC model
without initial parameters and without self-loops (however not yet!).
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Recall Markov basis

Suppose P = {x ∈ R
d|Ax = b, x ≥ 0} 6= ∅ and let M be a finite set such

that M ⊂ {x ∈ Z
d|Ax = 0}.

We define the graph Gb such that:

• Nodes of Gb are all the lattice points inside of P .

• We draw an undirected edge between a node u and a node v iff u−v ∈ M .

Definition :

M is called a Markov basis if Gb is a connected graph for all b.
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Good news

Theorem: For any T ≥ 4, a minimum Markov basis for the toric ideal IA(d),
where A(d) is the design matrix under Model (d), consists of binomials of
degree less than or equal to d = 6.

We used polyhedral geometry to prove this theorem.

Here we focus on Model (d) and S = 3.

Look closely at P (d), the convex hull generated by the columns of the design
matrix for Model (d).
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For k ∈ N, we define the k-th dilation of P as kP := { kx | x ∈ P, }. A
point x ∈ P is a vertex if and only if it can not be written as a convex
combination of points from P\{x}.

The cone of {a1, . . . ,am} ⊂ R
n is defined as

cone(a1, . . . ,am) :=

{

x ∈ R
n | x =

m
∑

i=1

λiai, λi ≥ 0

}

.

Integer lattice L := ZA = {n1a1 + · · ·+ nmam | ni ∈ Z}.

The semigroup S := NA := {n1a1 + · · ·+ nmam | ni ∈ N}.
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Let P (d) be the convex hull generated by the columns of the design matrix
for Model (d), let C(d) be the cone generated by the columns of the design
matrix for Model (d), let L(d) be the lattice generated by the columns of
the design matrix for Model (d), and let S(d) be the semigroup generated
by the columns of the design matrix for Model (d).

Prop: kP (d) = C(d) ∩ {
∑n

i=1 xi = k(T − 1)} and
⋃

k∈Z+

(

kP (d) ∩ Z
n
)

=

C(d) ∩ L(d).

Note: A semigroup is normal if and only if the semigroup is equal to the
intersection between the cone and the lattice.

Theorem: We consider Model (d) and S = 3. The semigroup generated
by the columns of the design matrix A(d) is normal for T ≥ 5.

IMS-APRM 12



Ruriko Yoshida

One notices that the set of columns of A(d) is a graded set.

Theorem 13.14 in [Sturmfels 1996] Let A ⊂ Z
d be a graded set such

that the semigroup generated by the elements in A is normal. Then the toric
ideal IA associate with the set A is generated by homogeneous binomials
of degree at most d.

Theorem: For any T ≥ 4, a minimum Markov basis for the toric ideal IA(d),
where A(d) is the design matrix under Model (d), consists of binomials of
degree less than or equal to d = 6.
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Polyhedral geometry

Theorem Let S = 3. The number of vertices of P (d) is bounded by some
constant C which does not depend on T .

Also we found their hyperplane representations.

Theorem For T ≥ 5, the number of facets is 24 and we described explicitely
the these 24 facet description of P (d) depend on T mod 6.
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The number of Hilbert basis elements (normaliz) and f-vectors (Polymake)
for Model (d) where S = 3. The running time of normaliz was under two
seconds for all data sets.

T #HB f0 f1 f2 f3 f4

4 20 20 69 90 51 12

5 30 27 114 167 102 24

6 48 24 111 176 111 24

7 66 41 144 189 108 24

8 96 42 171 230 123 24

9 123 45 186 245 126 24

10 166 56 201 252 129 24

11 207 63 216 257 126 24

12 264 54 189 236 123 24

13 320 77 246 279 132 24

14 396 54 189 236 123 24

15 468 63 216 257 126 24
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Here we summarize all the inequalities in their original form and in their
inhomogeneous form, that is using the equality n(T − 1) = x12 + x13 +
x21 + x23 + x31 + x32 where n ≥ 1. Index are ordered by lexicographically.
Permute on [S].

For any T ≥ 5, a row vector equivalent to

c = [1, 0, 0, 0, 0, 0] · x ≥ 0

For any T ≥ 5, a row vector equivalent to

c = [T, T,−(T − 2), 1,−(T − 2), 1)] · x ≥ 0

inhomogeneous
c = [1, 1,−1, 0,−1, 0] · x ≥ −n.
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For any T odd, T ≥ 5, a row vector equivalent to

c = [1, 1,−1,−1, 1, 1] · x ≥ 0.

For any T ≥ 4 of the form T = 3k + 1, k ≥ 1, a row vector equivalent to

c = [2,−1,−1,−1, 2, 2] · x ≥ 0.

For any T ≥ 5 of the form T = 3k + 2, k ≥ 1, a row vector equivalent to

c = [2k + 1,−k,−k,−k, 2k + 1, 2k + 1] · x ≥ 0

inhomogeneous

(3− n)(x12 + x31 + x32)− n(x13 + x21 + x23) ≥ −n.
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For any T ≥ 6, T :even, a row vector equivalent to

[
3

2
T − 1,

T

2
,−

T

2
+ 1,−

T

2
+ 1,−

T

2
+ 1,

T

2
] · x ≥ 0

inhomogeneous

3x12 + x13 − x21 − x23 − x31 + x32 ≥ −n.

For T = 6k + 3, a row vector equivalent to

[5k + 2, 2k + 1,−4k − 1,−k,−k, 2k + 1] · x ≥ 0

inhomogeneous

(6− n)x12 + (3− n)x13 − (3 + n)x21 + (3− n)x32 − nx23 − nx31 ≥ −2n.
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For T = 6k, a row vector equivalent to

[10k − 1, 4k,−8k + 2,−2k + 1,−2k + 1, 4k] · x ≥ 0

inhomogeneous

(6− n)x12 + (3− n)x13 − (3 + n)x21 + (3− n)x32 − nx23 − nx31 ≥ −2n.
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Big conjecture

On the experimentations we ran, we found evidence that more should be
true.

Conjecture Fix S ≥ 3; then, for every T ≥ 4, there is a Markov basis for
the toric ideal IA(d) consisting of binomials of degree at most S − 1, and
there is a Gröbner basis with respect to some term ordering consisting of
binomials of degree at most S.

Despite the computational limitations (the number of generators grows
exponentially when T grows,) we were able to test this conjecture using the
software 4ti2 for T = 4, 5, 6 with S = 3 and T = 4, 5 with S = 4.

Problem Provide a full description of the Markov bases for the THMC
model (on Model (d)) in three states (i.e. when S = 3) that does not
depend on T .
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Question??
http://arxiv.org/abs/1204.3070
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