
Computing holes in semi-groups
R. Hemmecke1, A. Takemura2, and R. Yoshida3

1Otto-von-Guericke University Magdeburg, Germany; 2University of Tokyo, Japan; 3University of Kentucky, USA

Introduction

•For a matrix A ∈ Zd×n, let C, L, and Q denote the cone, the lattice, and the
semi-group (monoid) spanned by the columns A.j, j = 1, . . . , n, of A.

•We assume the cone C to be pointed.

•By Qsat = C ∩ L we denote the saturation of Q and call Q normal if the set
H = Qsat \ Q is empty.

•The elements of H are called holes and a hole h ∈ H is fundamental if there is no
other hole h′ ∈ H such that h − h′ ∈ Q.

•While F is always finite [TY06], H could be infinite.

•We call s ∈ Q a saturation point of Q, if s + Qsat ⊆ Q. The set of all saturation
points of Q is denoted by S.

•By min(S; Q) we denote the set of all Q-minimal elements of S, that is, the set of
all s ∈ S for which there is no other s′ ∈ S with s−s′ ∈ Q. Again, it can be shown
that min(S; Q) is always finite [TY06, Prop. 4.4].

Goal. We present an algorithm that computes an explicit representation of H .

Example

Consider the 2 × 4 matrix

A =

(

1 1 1 1
0 2 3 4

)

.

The associated semi-group Q has infinitely many holes

H = {(1, 1)ᵀ + α · (1, 0)ᵀ : α ∈ Z+},

out of which only (1, 1)ᵀ is fundamental, see Figure 2. Moreover, the semi-group Q

has three Q-minimal saturation points: (1, 2)ᵀ, (1, 3)ᵀ, and (1, 4)ᵀ.

Figure 2: Non-holes, holes and fundamental hole for the example.

Main algorithm

Algorithm. (Computing an explicit representation of H .)

1. Compute the set F of fundamental holes.

2. For each of the finitely many f ∈ F , compute the set min((f + Q) ∩ Q; Q) of
Q-minimal elements in (f + Q) ∩ Q. Herein, s ∈ (f + Q) ∩ Q is called Q-minimal
if there is no other s′ ∈ (f + Q) ∩ Q with s − s′ ∈ Q.

3. From the Q-minimal elements in (f + Q) ∩ Q, compute an explicit representation
of the holes of Q lying in f + Q.

Computing the fundamental holes F

Note. The set F of fundamental holes is finite [TY06], since it is a subset of
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Let B be the minimal integral generating set of C ∩ L.

• If B contains no hole of Q, Q must be normal.

•Moreover, every hole of Q appearing in B must be fundamental, since B is minimal.

• If f ∈ F is not in B, f can be written as a nonnegative integer linear combination
of elements in B, since f ∈ C∩L and since B is an integral generating set of C∩L.
This representation cannot have summands that are not fundamental holes, since
otherwise f is not fundamental.

Algorithm. (Computing the fundamental holes F )

1. Compute the minimal integral generating set B of C ∩ L.

2. Check each z ∈ B whether it is a fundamental hole or not, that is, compute B ∩F .

3. Generate all nonnegative integer combinations of elements in B ∩ F that lie in P

and check for each such z whether it is a fundamental hole or not.

Computing the Q-minimal elements in (f + Q) ∩ Q

In order to compute these Q-minimal elements, we have to find an explicit
representation for the solutions of

{λ ∈ Z
n
+ : ∃µ ∈ Z

n
+ such that f + Aλ = Aµ}. (1)

Every Q-minimal point z ∈ (f + Q) ∩ Q must correspond to a minimal
inhomogeneous solution λ of this system.

Computing the holes in f + Q

Having found the Q-minimal non-holes in f + Q, we can find an explicit
representation for all holes in f + Q as follows.

1. let us construct a monomial ideal IA,f ∈ Q[x1, . . . , xn] generated by the monomials

IA,f = 〈xλ : λ ∈ Z
n
+, f + Aλ ∈ (f + Q) ∩ Q〉.

2. Since under our assumption that C is pointed, there are only finitely many λ ∈ Zn
+

such that f + Aλ = z for each z ∈ f + Q, by solving f + Aλ = z, λ ∈ Zn
+ for all

Q-minimal points in (f + Q) ∩ Q, we can find a finite generating set for IA,f .

3. While the monomial xλ corresponds to z = f+Aλ ∈ f+Q, we have z ∈ (f+Q)∩Q

if and only if xλ ∈ IA,f . Thus, the set of holes in f + Q corresponds to the set of
standard monomials of the monomial ideal IA,f .

4. Mapping this explicit representation for the standard monomials xλ back to z ∈
f + Q, we get a finite representation of the holes in f + Q.

Example

Computing fundamental holes: The lattice L = Z2. The minimal Hilbert basis
B of C ∩ L is:

B = {(1, 0)ᵀ, (1, 1)ᵀ, (1, 2)ᵀ, (1, 3)ᵀ, (1, 4)ᵀ}.

(1, 1)ᵀ is a hole. Being in B, B ∩ F = {(1, 1)ᵀ}. Since a nonnegative integer linear
combinations of elements from B ∩ F 2 · (1, 1)ᵀ = (2, 2)ᵀ is an element of Q,

F = {(1, 1)ᵀ}.
Computing the Q-minimal elements in (f + Q) ∩ Q: 4ti2 [HHM05] only

allows the computation of all minimal inhomogenous solutions of

{(λ, µ) ∈ Z
2n
+ : f + Aλ = Aµ}. (2)

As every minimal solution λ to (1) must appear in a minimal solution (λ, µ) of (2).
Let f = (1, 1)ᵀ and consider (f + Q) ∩ Q. The linear system to solve is

1 + λ1 + λ2 + λ3 + λ4 = µ1 + µ2 + µ3 + µ4

1 + 2λ2 + 3λ3 + 4λ4 = 2µ2 + 3µ3 + 4µ4

with λi, µj ∈ Z+, i, j ∈ {1, 2, 3, 4}.
4ti2 gives the following 5 minimal inhomogeneous solutions (λ, µ) to system (2):

(λ, µ) → z = f + Aλ

(0, 0, 0, 2, 0, 0, 3, 0)ᵀ → (3, 9)ᵀ

(0, 1, 0, 0, 1, 0, 1, 0)ᵀ → (2, 3)ᵀ

(0, 0, 1, 0, 1, 0, 0, 1)ᵀ → (2, 4)ᵀ

(0, 0, 1, 0, 0, 2, 0, 0)ᵀ → (2, 4)ᵀ

(0, 0, 0, 1, 0, 1, 1, 0)ᵀ → (2, 5)ᵀ

Note that (3, 9)ᵀ is not Q-minimal, since we computed minimal inhomogeneous
solutions (λ, µ) of system (2). The Q-minimal elements in (f + Q) ∩ Q are

{(2, 3)ᵀ, (2, 4)ᵀ, (2, 5)ᵀ}.
Computing the holes in f + Q: Let us construct the generators of IA,f . We

have to find all representations of the form z = f + Aλ, λ ∈ Z4
+ for each Q-minimal

element z in (f + Q) ∩ Q, i.e. for each z ∈ {(2, 3)ᵀ, (2, 4)ᵀ, (2, 5)ᵀ}.

z = f + Aλ

(2, 3)ᵀ = (1, 1)ᵀ + A(0, 1, 0, 0)ᵀ

(2, 4)ᵀ = (1, 1)ᵀ + A(0, 0, 1, 0)ᵀ

(2, 5)ᵀ = (1, 1)ᵀ + A(0, 0, 0, 1)ᵀ

Thus, we get the monomial ideal

IA,f = 〈x2, x3, x4〉,

whose set of standard monomials is {xα
1 : α ∈ Z+}. Thus, the set of holes in f + Q is

{f + αA.1 : α ∈ Z+} = {(1, 1)ᵀ + α(1, 0)ᵀ : α ∈ Z+}
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