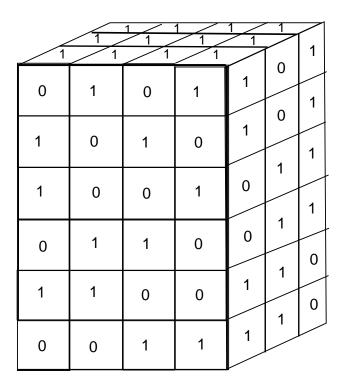
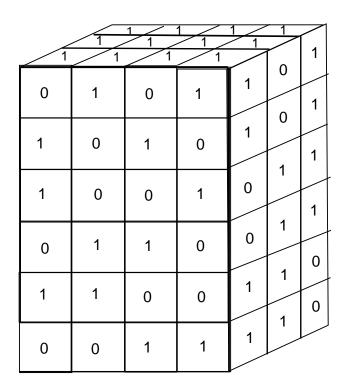
Fundamental holes and saturation points of a commutative semigroup and their applications to contingency tables


Ruriko Yoshida Dept. of Mathematics Duke University

Joint work with A. Takemura

www.math.duke.edu/~ruriko


Puzzle

Is there a table satisfying these given marginals?

Each cell has nonnegative integral value.

Answer

There does not exist such a table, although the marginals are consistent.

Problem

Suppose we have a given set of marginals for contingency tables.

Want: decide whether there exists a table satisfying the given marginals.

This is called the **multi-dimensional integer planar transportation problem**.

In terms of Optimization, we can rewrite this problem as an **integral feasibility problem**, that is:

Decide whether there exists an integral solution in the system

$$Ax = b, \ x \ge 0,$$

where $A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^d$.

Observation

Assume the lattice L generated by the columns of A is \mathbb{Z}^d . Let cone(A) be the cone generated by the columns of A and $P_b = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$.

$$P_b \neq \emptyset \Leftrightarrow b \in \operatorname{cone}(A).$$

Let Q be the semigroup generated by the columns a_i of A, i.e. $Q = \{x \in \mathbb{R}^d : \sum_{i=1}^n \alpha_i a_i, \alpha_i \in \mathbb{Z}_+\} \subset \operatorname{cone}(A) \cap \mathbb{Z}^d$.

$$P_b \cap \mathbb{Z}^n \neq \emptyset \Leftrightarrow b \in Q.$$

 $(P_b \neq \emptyset) \bigwedge (P_b \cap \mathbb{Z}^n = \emptyset) \Leftrightarrow b \in (\operatorname{cone}(A) \cap \mathbb{Z}^d - Q).$

We study on the set of holes of Q, $H := \operatorname{cone}(A) \cap \mathbb{Z}^d - Q$.

Motivation:

- (Algebra): Almost all focus in the algebraic literature on this topic is on the normal case (i.e. there are no holes).
- (Statistics): This is significant for statistics because many affine semigroups with statistical connections are not normal.

Note: Q is normal iff the Hilbert basis of cone(A) is in Q.

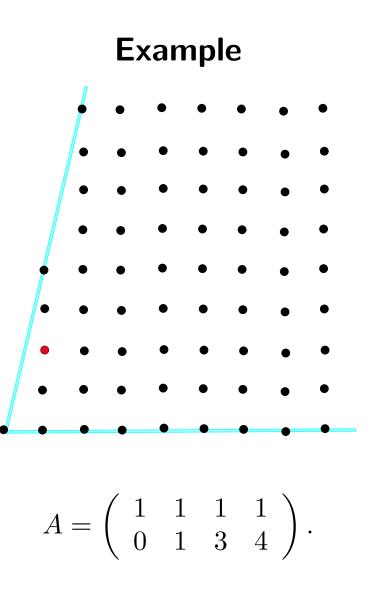
Problem: Find the necessary and sufficient conditions for H's finiteness.

Notation and definitions

Def. The semigroup $Q_{\text{sat}} = \text{cone}(A) \cap L$ is called the saturation of Q.

$$\begin{array}{rcl} Q &=& A\mathbb{Z}_{+}^{n} = \{\lambda_{1}\boldsymbol{a}_{1} + \dots + \lambda_{n}\boldsymbol{a}_{n} : \lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}_{+}\} \\ K &=& A\mathbb{R}_{+}^{n} = \{\lambda_{1}\boldsymbol{a}_{1} + \dots + \lambda_{n}\boldsymbol{a}_{n} : \lambda_{1}, \dots, \lambda_{n} \in \mathbb{R}_{+}\} \\ L &=& A\mathbb{Z}^{n} = \{\lambda_{1}\boldsymbol{a}_{1} + \dots + \lambda_{n}\boldsymbol{a}_{n} : \lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}\} \\ Q_{\text{sat}} &=& K \cap L = \text{saturation of } A \supset Q \\ H &=& Q_{\text{sat}} \setminus Q = \text{holes in } Q_{\text{sat}} \\ S &=& \{\boldsymbol{a} \in Q : \boldsymbol{a} + Q_{\text{sat}} \subset Q\} = \text{saturation points of } Q \\ \bar{S} &=& Q \setminus S = \text{non-saturation points of } Q \end{array}$$

Under the assumption above K and Q are **pointed** and S is non-empty by Problem 7.15 of [Miller and Sturmfels, 2004].


Minimal saturation points

We now consider minimal points of S with respect to S, Q and Q_{sat} . We call $a \in S$ an S-minimal (a Q-minimal, a Q_{sat} -minimal, resp.) if there exists no other $b \in S$, $b \neq a$, such that $a - b \in S$ (Q, Q_{sat} , resp.). More formally $a \in S$ is

- a) an S-minimal saturation point if $(a + (-(S \cup \{0\}))) \cap S = \{a\}$,
- b) a Q-minimal saturation point if $(a + (-Q)) \cap S = \{a\}$,
- c) a Q_{sat} -minimal saturation point if $(a + (-Q_{\text{sat}})) \cap S = \{a\}$.

Let $\min(S; S)$ denote the set of S-minimal saturation points, $\min(S; Q)$ the set of Q-minimal saturation points, and $\min(S; Q_{\text{sat}})$ the set of Q_{sat} -minimal saturation points.

Note. $\min(S; Q_{\text{sat}}) \subset \min(S; Q) \subset \min(S; S).$

Example

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{array} \right).$$

$$H = \{(1,2)^t\}.$$

$$\bar{S} = \{(0,0)^t, (1,0)^t, (1,1)^t\}.$$

 $\min(S; S) = \{(1,3)^t, (1,4)^t, (2,0)^t, (2,1)^t, (2,2)^t, (2,3)^t, (2,4)^t, (2,5)^t, (3,0)^t, (3,1)^t, (3,2)^t\}.$

Thus, H, \overline{S} , and $\min(S; S)$ are all finite.

Fundamental holes

Def. We call $a \in H \subset Q_{sat}$, $a \neq 0$, a fundamental hole if

$$Q_{\operatorname{sat}} \cap (\boldsymbol{a} + (-Q)) = \{\boldsymbol{a}\}.$$

Let H_0 be the set of fundamental holes.

Ex. $A = (3 \ 5 \ 7)$. $Q_{\text{sat}} = \{0, 1, \ldots\}, Q = \{0, 3, 5, 6, 7, \ldots\}, -Q = \{0, -3, -5, -6, -7, \ldots\}$. $H = \{1, 2, 4\}$. Among the 3 holes, 1 and 2 are fundamental. For example, $2 \in H$ is fundamental because

$$\{0, 1, \ldots\} \cap \{2, -1, -3, -4, -5, \ldots\} = \{2\}.$$

On the other hand $4 \in H$ is not fundamental because

$$\{0, 1, \ldots\} \cap \{4, 1, -1, -2, -3, \ldots\} = \{4, 1\}.$$

Fundamental holes

Lemma. [Takemura and Y., 2006]

 H_0 is finite.

Let $H_0 = \{y_1, \ldots, y_M\}$. For each $y_h \in H_0$ and each a_i , if there exists some $\lambda \in \mathbb{Z}$ such that $y_h + \lambda a_i \in Q$, let

$$\bar{\lambda}_{hi} = \min\{\lambda \in \mathbb{Z} \mid \boldsymbol{y}_h + \lambda \boldsymbol{a}_i \in Q\}.$$

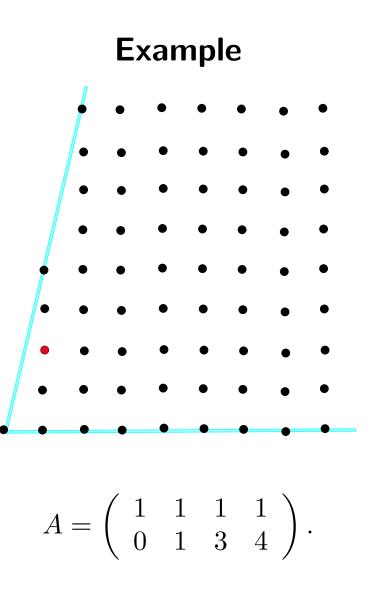
Otherwise define $\bar{\lambda}_{hi} = \infty$.

Thm. [Takemura and Y., 2006]

H is finite if and only if $\overline{\lambda}_{hi} < \infty$ for all $h = 1, \dots, M$ and all $i = 1, \dots, n$.

Thm. [Takemura and Y., 2006]

Let $B = \{b_1, \ldots, b_L\}$ denote the Hilbert basis of Q_{sat} . If $b_l + \lambda a_i \in Q$ for some $\lambda \in \mathbb{Z}$, let


$$\bar{\mu}_{li} = \min\{\lambda \in \mathbb{Z} \mid \boldsymbol{b}_l + \lambda \boldsymbol{a}_i \in Q\}$$

and $\bar{\mu}_{li} = \infty$ otherwise.

Then H is finite if and only if $\bar{\mu}_{li} < \infty$ for all $l = 1, \ldots, L$ and all $i = 1, \ldots, n$.

Remark. For each $1 \leq i \leq n$, let $\tilde{Q}_{(i)} = \{\sum_{j \neq i} \lambda_j a_j \mid \lambda_j \in \mathbb{Z}_+, j \neq i\}$ be the semigroup spanned by $a_j, j \neq i$. For each extreme a_i and for each $b_l \notin Q$, we only have to check

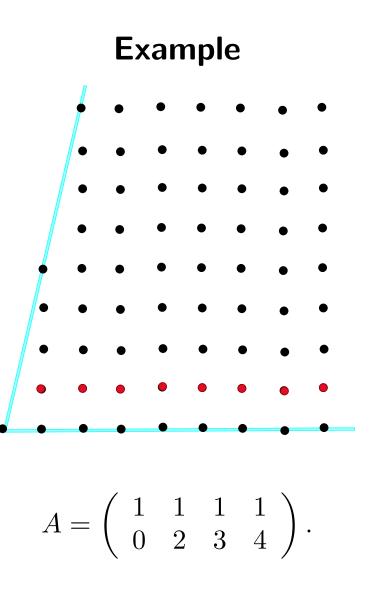
$$b_l \in (-\mathbb{Z}_+a_i) + \tilde{Q}_{(i)}, \text{ for } l = 1, ..., L.$$

Example

$$B = \{ \boldsymbol{b}_1 = (1,0)^t, \boldsymbol{b}_2 = (1,1)^t, \boldsymbol{b}_3 = (1,2)^t, \boldsymbol{b}_4 = (1,3)^t, \boldsymbol{b}_5 = (1,4)^t \}.$$

Then we can write b_3 as the following:

$$\begin{aligned} 1,2)^t &= -(1,0)^t + 2 \cdot (1,1)^t \\ &= (1,0)^t - (1,1)^t + (1,3)^t \\ &= (1,1)^t - (1,3)^t + (1,4)^t \\ &= 2 \cdot (1,3)^t - (1,4)^t. \end{aligned}$$


We have $\bar{\mu}_{3i} = 1$ for each i = 1, ..., 4 and $\bar{\mu}_{li} = 0$, where $l \neq 3$ for each i = 1, ..., 4. Thus by Theorem above, the number of elements in H is finite. Note that H consists of only one elements $\{\boldsymbol{b}_3 = (1,2)^t\}$.

Ruriko Yoshida **Thm.** [Takemura and Y., 2006]

The following statements are equivalent.

- 1. $\min(S; S)$ is finite.
- 2. $\operatorname{cone}(S)$ is a rational polyhedral cone.
- 3. There is some $s \in S$ on every extreme ray of K.
- 4. H is finite.
- 5. \bar{S} is finite.

Prop. [Takemura and Y., 2006] $\min(S; Q)$ is finite.

Example

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{array} \right).$$

H consists of elements $\{(k,1): k \in \mathbb{Z}, k \ge 1\}.$

 $\bar{S} = \{(i,0)^t : i \in \mathbb{Z}, i \ge 0\},\$ $\min(S;S) = \{(k,j)^t : k \in \mathbb{Z}, k \ge 1, 2 \le j \le 3\} \cup \{(1,4)\}.$

Thus, H, \overline{S} , and $\min(S; S)$ are all infinite. However, $\min(S; Q) = \{(1,2)^t, (1,3)^t, (1,4)^t\}$ is finite.

Applications to contingency tables

 $2 \times 2 \times 2 \times 2$ tables with 2-marginals.

The semigroup has 16 generators a_1, \ldots, a_{16} in \mathbb{Z}^{24} .

The Hilbert basis of the cone generated by these 16 vectors contains 17 vectors b_1, \ldots, b_{17} . The first 16 vectors are the same as a_i , i.e. $b_i = a_i$, $i = 1, \ldots, 16$. The 17-th vector b_{17} is

$$\boldsymbol{b}_{17} = (1 \ 1 \ \dots \ 1)^t$$

consisting of all 1's.

Thus, $b_{17} \notin Q$. Then we set the 16 systems of linear equations such that:

$$P_j: \quad \boldsymbol{b}_1 x_1 + \boldsymbol{b}_2 x_2 + \dots + \boldsymbol{b}_{16} x_{16} = \boldsymbol{b}_{17}$$
$$x_j \in \mathbb{Z}_-, \ x_i \in \mathbb{Z}_+, \ \text{ for } i \neq j,$$

for $j = 1, 2, \cdots, 16$.

Using LattE, we showed that the 16 systems of linear equations have integral solutions.

Thus by theorems above, H, \bar{S} , and $\min(S;S)$ are finite.

 $2 \times 2 \times 2 \times 2$ tables with 2-marginals and 3-marginal i.e. [12][13][14][123] and with levels of 2 on each node.

The semigroup is generated by 16 vectors in \mathbb{Z}^{12} .

The Hilbert basis consists of these 16 vectors and two additional vectors

Then we set the system of linear equations such that:

$$b_1 x_1 + b_2 x_2 + \dots + b_{16} x_{16} = b_{17}$$

 $x_1 \in \mathbb{Z}_-, \ x_i \in \mathbb{Z}_+, \ \text{ for } i = 2, \dots, 16.$

We solved the system via lrs, CDD and LattE.

We noticed that this system has no real solution (infeasible).

Thus by theorems above, H, \bar{S} , and $\min(S;S)$ are infinite.

Prop. [Takemura and Y., 2006]

 $3 \times 4 \times 7$ table with 2-marginals has infinite number of holes.

Sketch of pf.

					sum
	С	0	0	0	c
	0	0	0	0	0
	0	0	0	0	0
sum	С	0	0	0	С

Table 1: the 7-th 3×4 slice is uniquely determined by its row and its column sums. c is an arbitrary positive integer. Thus for each choice of positive integer the beginning $3 \times 4 \times 6$ part remains to be a hole. Since the positive integer is arbitrary, $3 \times 4 \times 7$ table has infinite number of holes.

Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem 6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality (i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not known only for the following three cases:

$$5 \times 5 \times 3$$
, $5 \times 4 \times 3$, $4 \times 4 \times 3$.

We want to decide whether semigroups of these tables above are normal or not.

Also we want to decide whether $3 \times 4 \times 6$ table with 2-marginals have a finite number of holes.

Questions?

A preprint is available at arxiv:

http://arxiv.org/abs/math.ST/0603108

Thank you....