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Challenge

We would like to assemble the fungi tree of life.

Francois Lutzoni and Rytas Vilgalys Department of Biology, Duke University

1500+ fungal species

http://ocid.nacse.org/research/aftol/about.php
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Many problems to be solved....

http://tolweb.org/tree?group=fungi

Zygomycota is not monophyletic. The position of some lineages such as
that of Glomales and of Engodonales-Mortierellales is unclear, but they may
lie outside Zygomycota as independent lineages basal to the Ascomycota-
Basidiomycota lineage (Bruns et al., 1993).
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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of
organisms.
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Constructing trees from sequence data

“Ten years ago most biologists would have agreed that all organisms evolved
from a single ancestral cell that lived 3.5 billion or more years ago. More
recent results, however, indicate that this family tree of life is far more
complicated than was believed and may not have had a single root at all.”
(W. Ford Doolittle, (June 2000) Scientific American).

Since the proliferation of Darwinian evolutionary biology, many scientists
have sought a coherent explanation from the evolution of life and have tried
to reconstruct phylogenetic trees.
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Methods to reconstruct a phylogenetic tree from DNA sequences include:

• The maximum likelihood estimation (MLE) methods: They describe
evolution in terms of a discrete-state continuous-time Markov process.
The substitution rate matrix can be estimated using the expectation
maximization (EM) algorithm. (for eg. Dempster, Laird, and Rubin
(1977), Felsenstein (1981)).

• Distance based methods: It computes pair-wise distances, which can
be obtained easily, and combinatorially reconstructs a tree. The most
popular method is the neighbor-joining (NJ) method. (for eg. Saito
and Nei (1987), Studier and Keppler (1988)).
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However

The MLE methods: An exhaustive search for the ML phylogenetic tree is
computationally prohibitive for large data sets.

The NJ method: The NJ phylogenetic tree for large data sets loses so
much sequence information.

Goal:

• Want an algorithm to estimate substitution rate and phylogenetic tree
reconstruction by combining the MLE method and the NJ method.

• Want to apply methods to very large datasets.

Note: An algebraic view of these discrete stat problems might help solve
this problem.
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The EMGNJ algorithm

The GNJ method: in 2005, Levy, Y., and Pachter introduced the
generalized neighbor-joining (GNJ) method, which reconstructs a
phylogenetic tree based on comparisons of subtrees rather than pairwise
distances

• The GNJ method uses more sequence information: the resulting tree
should be more accurate than the NJ method.

• The computational time: polynomial in terms of the number of DNA
sequences.

The EMGNJ algorithm (the Algebraic Biology, 2005): iterates between
the EM algorithm for estimating substitution rates and the generalized NJ
method for phylogenetic tree reconstruction.
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The EM algorithm for

estimating substitution rates
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Pairwise sequences

Suppose we have a pair of sequences at a single site such that:
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Assuming time reversibility....

-

0 T

x0 =A xT =G?

t1

?

t2

?

t3

Colorado State 10



Ruriko Yoshida

Complete observation

Suppose we have the complete observation of continuous time Markov
chain x = {xt : 0 ≤ t ≤ T} on the state space Σ = {A, C,G, T}.

Example:

-

Time0 Tt1 t2 t3

State

A
G
C
T

t d

t d

t d

t

We wish to estimate the substitution rate matrix Q using Maximum
Likelihood.
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Let Q = (Q(a, b))a,b∈Σ ∈ R
4×4.

The waiting time in a state a has the density −Q(a, a) exp(−Q(a, a)t) and
Prob(a → b) = −Q(a, b)/Q(a, a).

Thus we can write the likelihood function of the example as:

eQ(A,A)(t1+(t3−t2))+Q(G,G)(T−t3)+Q(C,C)(t2−t1)Q(A,G)Q(A,C)Q(C,A).

So, we can write the likelihood in terms of T (a), the total time spent in
state a, and N(a, b), the number of substitutions of state a with b.
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More generally...

In general, if Q is parametrized by θ, Q = Qθ, and with x = {x(t) : 0 ≤
t ≤ T}, the MLE problem for a complete observation is:

max L(θ;x) =





∏

a∈Σ

∏

b 6=a

Qθ(a,b)N(a,b)





[

∏

a∈Σ

exp(Qθ(a,a))T(a)

]

such that θ ∈ Θ.

The log-likelihood for a complete observation becomes

log L(θ;x) =
∑

a∈Σ

∑

b 6=a

N(a,b) log Qθ(a,b) +
∑

a∈Σ

T(a)Qθ(a,a).
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The GTR model

Consider the general time reversible (GTR) model.

Let πa, a ∈ Σ,
∑

a πa = 1, be the stationary distribution of the Markov
chain.

The GTR model has substitution rate matrix:

Qθ =









· θAGπG θACπC θATπT

θAGπA · θGCπC θGTπT

θACπA θGCπG · θCTπT

θATπA θGTπG θCTπC ·









where the diagonal elements are such that each row sums to zero.

The 6 unknown parameters are θ = (θAG, θAC, θAT , θGC, θGT , θCT ).
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Missing data problem
Problem: If we only observe x(0) and x(T )?

Note: The complete log-likelihood is maximized for

θ∗ab =
N(a,b) + N(b,a)

πbT(a) + πaT(b)
, a 6= b. (1)

The EM algorithm:

1. (Expectation Step) Calculate T (a)∗ := E[T (a) : x(0), x(T )] and
N(a, b)∗ := E[N(a, b) : x(0), x(T )].

2. (Maximization Step) Substitute T (a)∗ and N(a, b)∗ into Equation (1).

Iterate between Step 1 and Step 2 until convergence.
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[due to the Chapman-Kolmogorov equation, Hobolth and Jensen, 2005]

Denote the transition matrix P (t) = exp(Qt).

• Time spent in state a

E[T(a)|x(0) = i,x(T) = j] =

∫ T

0

Pia(t)Paj(T − t)dt/Pij(T).

• Number of transitions between states a and b

E[N(a,b)|x(0) = i,x(T) = j] = Q(a,b)

∫ T

0

Pia(t)Pbj(T − t)dt/Pij(T).
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Multiple sequences

Assuming that the multiple alignment is given. We fix the tree topology for
a tree T with n leaves. Note that there are 2n − 3 edges in T .

The single site complete log-likelihood becomes

log L(θ;x) =

2n−3
∑

i=1

(

∑

a∈Σ

∑

b 6=a

Ni(a,b) log Qi(a,b) +
∑

a∈Σ

Ti(a)Qi(a,a)
)

where T i(a) is the total time spent in state a on edge i and N i(a, b) is the
number of transitions from a to b on edge i.

Apply the previous equations and Felsenstein’s pruning algorithm to solve
the problem.
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The GNJ method
MJOIN is available at http://bio.math.berkeley.edu/mjoin/.
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Neighbor Joining method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Let D(ij) be a pairwise distance between i and j.

Thm. [Saitou-Nei, 1987 and Studier-Keppler, 1988]

Let A ∈ R
n×n such that Aij = D(ij) − (ri + rj)/(n − 2), where ri :=

∑n

k=1 D(ik). {i∗, j∗} is a cherry in T if Ai∗j∗ is a minimum over all i and
j.

Neighbor Joining Method:

Idea. Initialize a star-like tree. Then find a cherry {i, j} and compute
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.
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Neighbor Joining Method
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The GNJ method

• Extended the Neighbor Joining method with the total branch length of
m-leaf subtrees.

• Increasing 2 ≤ m ≤ n − 2, since there are more data, a reconstructed
tree from GNJ method gets closer to the true tree than the Saito-Nei NJ
method.

• The time complexity of GNJ method is O(nm).

Note: If m = 2, then GNJ method is the Neighbor Joining method with
pairwise distances.
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Notation and definitions

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of
all m-element subsets of [n].

Def. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0.

In the context of phylogenetic trees, the map D(i1, i2, ..., im) measures the
weight of a subtree that spans the leaves i1, i2, ..., im.

Denote D(i1i2 . . . im) := D(i1, i2, ..., im).
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Weights of Subtrees in T

i

j

k

l
x1

x2

D(ijkl) is the total branch length of the subtree in green. Also D(x1x2)
is the total branch length of the subtree in pink and it is also a pairwise
distance between x1 and x2.
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Thm. [Levy, Y., Pachter, 2005] Let Dm be an m-dissimilarity map on n

leaves of a tree T , Dm :
(

[n]
m

)

→ R≥0 corresponding m-subtree weights,
and define

S(ij) :=
∑

X∈([n]\{i,j}
m−2 )

Dm(ijX).

Then S(ij) is a tree metric.

Furthermore, if T ′ is based on this tree metric S(ij) then T ′ and T have
the same tree topology and there is an invertible linear map between their
edge weights.

Note. This means that if we reconstruct T ′, then we can reconstruct T .
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Neighbor Joining with Subtree Weights

Input: n DNA sequences and an integer 2 ≤ m ≤ n − 2.

Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the ML method.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain
additive tree T ′.

4. Using a one-to-one linear transformation, obtain a weight of each internal
edge of T and a weight of each leaf edge of T .
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The EMGNJ Algorithm
Input: n DNA sequences and an integer 2 ≤ m ≤ n − 2.

Output: The GTR rates and a phylogenetic tree.

1. Estimate stationary distribution from empirical frequencies.

2. Reconstruct tree using the GNJ method under the JC69 model.

3. Estimate GTR substitution rates and edge lengths from current tree via
the EM algorithm.

4. Reconstruct tree using the GNJ method and current GTR rates.

5. If likelihood is not improved return current tree and GTR rates; otherwise
go to 3.
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Simulation Results
We implemented subroutines of the EMGNJ algorithm, Step 3 and Step 4
with m = 4 under the JC model.
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S-locus receptor kinase (SRK)

In pollen, Plant self-incompatibility (SI) specificity is determined by the
S-locus cysteine-rich protein gene (SCR), which encodes small secreted
hydrophilic and positively charged proteins of 50 to 59 amino acids.

Both SRK and SCR are members of large families of genes that are expressed
in a variety of plant tissues.

Maturation of the flower in self-incompatible crucifers is accompanied by
the insertion of SRK into the plasma membrane of stigma epidermal cells
and of SCR into the pollen coat.

“Recognition and rejection of self in plant reproduction” by JB Nasrallah
Science, 296, (2002) p 305 – 308.
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Figure 1: Nasrallah (2002), Nature
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Find the phylogenetic tree for 21 different species’ S-locus receptor
kinase (SRK) sequences involved in the self/nonself discriminating self-
incompatibility system of the mustard family (Sainudiin et al, 2005).

Symmetric difference (∆) between 10, 000 trees sampled from the likelihood
function via MCMC and the trees reconstructed by 5 methods.

DNAml(A) is a basic search with no global rearrangements, whereas
DNAml(B) applies a broader search with global rearrangements and
randomize input order of sequences 100 times.
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A = sub-routine of the EMGNJ method, B = Saitou-Nei NJ method, C =
fastDNAml, D = DNAml(A), F = DNAml(B), and G = TrExML.

∆ A B C D F G
0 0 0 0 2 3608 0
2 77 0 0 1 471 0
4 3616 171 6 3619 5614 0
6 680 5687 5 463 294 5
8 5615 4134 3987 5636 13 71

10 12 8 5720 269 0 3634
12 0 0 272 10 0 652
14 0 0 10 0 0 5631
16 0 0 0 0 0 7

The result tree via the EMGNJ method is much better than the Saito-Nei
NJ metho dTrExML and fastDNAml.
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A unifying framework:

Algebraic Statistics
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What is Algebraic Statistics?

Algebraic Statistics is to apply computational commutative algebraic
techniques to statistical problems.

The algebraic view of discrete statistical models has been applied in many
statistical problems, including:

• conditional inference [Diaconis and Sturmfels 1998]

• disclosure limitation [Sullivant 2005]

• the maximum likelihood estimation [Hosten et al 2004]

• parametric inference [Pachter and Sturmfels 2004]

• phylogenetic invariants [Allman and Rhodes 2003, Eriksson 2005, etc].
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Algebraic statistical models

An algebraic statistical model arises as the image of a polynomial map

f : R
d → R

m , θ = (θ1, . . . , θd) 7→
(

p1(θ), p2(θ), . . . , pm(θ)
)

.

The unknowns θ1, . . . , θd represent the model parameters.

In the view of algebraic geometry, statistical models are algebraic varieties,
sets of points where all given polynomials vanish at the same time.

Note: The phylogenetic models are also algebraic varieties.

Note: The MLE problem is a polynomial optimization problem over the
image of f .
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Jukes-Cantor Model

Consider the Jukes-Cantor (JC) model.

The JC model has substitution rate matrix:

Q =









−3α α α α
α −3α α α
α α −3α α
α α α −3α









where α ≥ 0 is a parameter. The corresponding substitution matrix equals

θ(t) =
1

4









1 + 3e−4αt 1 − e−4αt 1 − e−4αt 1 − e−4αt

1 − e−4αt 1 + 3e−4αt 1 − e−4αt 1 − e−4αt

1 − e−4αt 1 − e−4αt 1 + 3e−4αt 1 − e−4αt

1 − e−4αt 1 − e−4αt 1 − e−4αt 1 + 3e−4αt
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However, they are not polynomials.... But we can do the following:

Introduce the new two parameters

πi =
1

4
(1 − e−4αiti) and µi =

1

4
(1 + 3e−4αiti).

These parameters satisfy the linear constraint

µi + 3πi = 1,

and the branch length ti of the ith edge can be recovered as follows:

3αiti = −
1

4
· log det

(

θi
)

= −
3

4
· log(1 − 4πi).
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The parameters are simply the entries in the substitution matrix

θi =









µi πi πi πi

πi µi πi πi

πi πi µi πi

πi πi πi µi









.

The Jukes–Cantor model on the tree T with r edges and n leaves is the
polynomial map

f : R
r → R

4n

.
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Example

Suppose we have an unrooted tree T with leaves {1, 2, 3} with letters
Σ = {A,C,G, T} at a single site. Want to estimate all parameters.
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This model is a three-dimensional algebraic variety, given as the image of a
trilinear map

f : R
3 → R

64.
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Example cont

Let p123 be the probability of observing the same letter at all three leaves,
pij the probability of observing the same letter at the leaves i, j and a
different one at the third leaf, and pdis the probability of seeing three
distinct letters.

p123 = µ1µ2µ3 + 3π1π2π3,

pdis = 6µ1π2π3 + 6π1µ2π3 + 6π1π2µ3 + 6π1π2π3,

p12 = 3µ1µ2π3 + 3π1π2µ3 + 6π1π2π3,

p13 = 3µ1π2µ3 + 3π1µ2π3 + 6π1π2π3,

p23 = 3π1µ2µ3 + 3µ1π2π3 + 6π1π2π3.
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All 64 coordinates of f are given by these five trilinear polynomials, namely,

fAAA = fCCC = fGGG = fTTT =
1

4
· p123,

fACG = fACT = · · · = fGTC =
1

24
· pdis,

fAAC = fAAT = · · · = fTTG =
1

12
· p12,

fACA = fATA = · · · = fTGT =
1

12
· p13,

fCAA = fTAA = · · · = fGTT =
1

12
· p23.

This means that the Jukes–Cantor model is the image of the simplified map

f ′ : R
3 → R

5,
(

(µ1, π1), (µ2, π2), (µ3, π3)
)

7→ (p123,pdis,p12,p13,p23).
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Characterize the image of f ′

Do the following linear change of coordinates:

q111 = p123 +
1

3
pdis −

1

3
p12 −

1

3
p13 −

1

3
p23 = (µ1 − π1)(µ2 − π2)(µ3 − π3)

q110 = p123 −
1

3
pdis + p12 −

1

3
p13 −

1

3
p23 = (µ1 − π1)(µ2 − π2)(µ3 + 3π3)

q101 = p123 −
1

3
pdis −

1

3
p12 + p13 −

1

3
p23 = (µ1 − π1)(µ2 + 3π2)(µ3 − π3)

q011 = p123 −
1

3
pdis −

1

3
p12 −

1

3
p13 + p23 = (µ1 + 3π1)(µ2 − π2)(µ3 − π3)

q000 = p123 + pdis + p12 + p13 + p23 = (µ1 + 3π1)(µ2 + 3π2)(µ3 + 3π3).

This model is the hypersurface in ∆4 whose ideal equals

Pf ′ = 〈q000q
2
111 − q011q101q110 〉.
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Commutative algebraic methods to phylogenetics.

Using the algebraic techniques with the JC model with triplets, interval
arithmetics, and the GNJ method, one can reconstruct a phylogenetic tree
from DNA sequences (Sainudiin and Y. 2005).

One can find more tree invariants with the JC model, the Kimura 2-
parameter model (K80), and the Kimura 3-parameter model (K81) at
http://www.math.tamu.edu/~lgp/small-trees/small-trees.html.

Using these invariants and the GNJ method one can reconstruct a
phylogenetic tree from DNA sequences (Contois and Levy, 2005).

One can find more applications of algebra to computational biology at our
new book Algebraic Statistics for Computational Biology edited by
Pachter and Sturmfels, Cambridge University Press 2005.
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• D. Levy (Math, Berkeley), L. Pachter (Math, Berkeley), and R. Yoshida,
”Beyond Pairwise Distances: Neighbor Joining with Phylogenetic
Diversity Estimates” the Molecular Biology and Evolution, Advanced
Access, November 9, (2005).

• A. Hobolth (Bioinformatics, NCSU) and R. Yoshida, ”Maximum
likelihood estimation of phylogenetic tree and substitution rates via
generalized neighbor-joining and the EM algorithm”, Algebraic Biology

2005, Computer Algebra in Biology, edited by H. Anai and K. Horimoto,
vol. 1 (2005) p41 - 50, Universal Academy Press, INC.. (Also available
at arXiv:q-bio.QM/0511034.)

• R. Sainudiin (Statistics, Oxford) and R. Yoshida, ”Applications of Interval
Methods to Phylogenetic trees” Algebraic Statistics for Computational

Biology edited by Lior Pachter and Bernd Sturmfels, (2005) Cambridge
University Press, p359 - 374.
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Thank you....
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