Applications of an algorithm to compute holes of semi-groups to contingency tables

Ruriko Yoshida Dept. of Statistics University of Kentucky Joint work with A. Takemura and R. Hemmecke www.ms.uky.edu/~ruriko

1

Puzzle

Is there a table satisfying these given margins?

Each cell has nonnegative integral value.

Answer

There does not exist such a table, although the marginals are consistent.

Suppose we have a given set of margins for contingency tables.

Want: decide whether there exists a table satisfying the given margins.

This is called the **multi-dimensional integer planar transportation problem** and it can be applied to **data sequrity problem**.

In terms of Optimization, we can rewrite this problem as an **integral feasibility problem**, that is:

Decide whether there exists an integral solution in the system

$$Ax = b, x \ge 0,$$

where $A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^d$.

Observation

Assume the lattice L generated by the columns of A is \mathbb{Z}^d . Let cone(A) be the cone generated by the columns of A and $P_b = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$. We assume that cone(A) is pointed.

$$P_b \neq \emptyset \Leftrightarrow b \in \operatorname{cone}(A).$$

Let Q be the semigroup generated by the columns a_i of A, i.e. $Q = \{x \in \mathbb{R}^d : \sum_{i=1}^n \alpha_i a_i, \alpha_i \in \mathbb{Z}_+\} \subset \operatorname{cone}(A) \cap \mathbb{Z}^d$.

$$P_b \cap \mathbb{Z}^n \neq \emptyset \Leftrightarrow b \in Q.$$

 $(P_b \neq \emptyset) \bigwedge (P_b \cap \mathbb{Z}^n = \emptyset) \Leftrightarrow b \in (\operatorname{cone}(A) \cap \mathbb{Z}^d - Q).$

We study on the set of holes of Q, $H := \operatorname{cone}(A) \cap \mathbb{Z}^d - Q$.

Motivation: Once we solve this problem, then we can solve an integer linear feasibility problem in a constant time if we vary the right-hand-side b.

Note: Q is normal (i.e. $H = \emptyset$) iff the Hilbert basis of cone(A) is in Q.

Note: Barvinok and Woods showed that: suppose we fix d and n. We can compute all holes of Q in polynomial time using **short rational functions** in polynomial time.

However: It is an **implicit representation** of H, and also their method cannot be implemented at this moment.

Problem: Find an explicit representation of *H*.

Fundamental holes

Def. We call $a \in H \subset Q_{\text{sat}}$, $a \neq 0$, a **fundamental hole** if there is no other hole $h' \in H$ such that $h - h' \in Q$. Let F be the set of fundamental holes.

Ex. $A = (3 \ 5 \ 7)$. $Q_{sat} = \{0, 1, ...\}$, $Q = \{0, 3, 5, 6, 7, ...\}$, $H = \{1, 2, 4\}$. Among the 3 holes, 1 and 2 are fundamental. For example, $2 \in H$ is fundamental because

$$\{0, 1, \ldots\} \cap \{2, -1, -3, -4, -5, \ldots\} = \{2\}.$$

On the other hand $4 \in H$ is not fundamental because

$$4-1=3\in Q.$$

Def. The semigroup $Q_{\text{sat}} = \text{cone}(A) \cap L$ is called the saturation of Q (i. e. $Q_{\text{sat}} = Q + H$ or $H = Q_{\text{sat}} - Q$).

We call $s \in Q$ a saturation point of Q, if $s + Q_{sat} \subseteq Q$. The set of all saturation points of Q is denoted by S.

Note. If cone(A) is pointed then $S \neq \emptyset$.

 $s \in S$ is called a *Q*-minimal of *S* there is no other $s' \in S$ with $s - s' \in Q$.

Let $f \in F$. $s \in (f+Q) \cap Q$ is called *Q*-minimal of $(f+Q) \cap Q$ if there is no other $s' \in (f+Q) \cap Q$ with $s - s' \in Q$.

 $s \in S$ is called a *S*-minimal of *S* there is no other $s' \in S$ with $s - s' \in S$.

Figure 1: Non-holes, holes and fundamental hole for Example.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{array} \right).$$

Example cont.

 \boldsymbol{Q} has infinitely many holes

$$H = \{ (1,1)^{\mathsf{T}} + \alpha \cdot (1,0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+ \},\$$

out of which only $(1,1)^{\intercal}$ is fundamental,

Q has three Q -minimal saturation points: $(1,2)^\intercal$, $(1,3)^\intercal$, and $(1,4)^\intercal$.

The **output** from our algorithm looks like:

$$H = \{(1,1)^{\mathsf{T}} + \alpha \cdot (1,0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+\}.$$

Algorithm

Input: $A \in \mathbb{Z}^{d \times n}$.

Output: An explicit representation of H.

- 1. Compute the set F of fundamental holes.
- 2. For each of the finitely many $f \in F$, compute all $z = f + A\lambda$ where all minimal inhomogenous solutions (λ, μ) of

$$\{(\lambda,\mu)\in\mathbb{Z}_{+}^{2n}:f+A\lambda=A\mu\}.$$
(1)

3. From the minimal inhomogenous solutions (λ, μ) of (1), compute an explicit representation of the holes of Q in f + Q.

Computing fundamental holes

The set F of fundamental holes is finite, since it is a subset of

$$P := \left\{ \sum_{j=1}^{n} \lambda_j A_{.j} : 0 \le \lambda_1, \dots, \lambda_n < 1 \right\}.$$

Algorithm. (Computing fundamental holes)

- Compute the minimal integral generating set B of $cone(A) \cap L$.
- Check each $z \in B$ whether it is a fundamental hole or not, that is, compute $B \cap F$.
- Generate all nonnegative integer combinations of elements in B ∩ F that lie in P and check for each such z whether it is a fundamental hole or not.

Example cont

In our example, the lattice $L = \mathbb{Z}^2$. With this, the minimal Hilbert basis B of cone $(A) \cap L$ consists of 5 elements:

$$B = \{(1,0)^{\mathsf{T}}, (1,1)^{\mathsf{T}}, (1,2)^{\mathsf{T}}, (1,3)^{\mathsf{T}}, (1,4)^{\mathsf{T}}\},\$$

out of which only $(1,1)^{\mathsf{T}}$ is a hole.

Being in B, $(1,1)^{\intercal}$ must be a fundamental hole. Thus, $B \cap F = \{(1,1)^{\intercal}\}$.

Note that $2 \cdot (1,1)^{\intercal} = (2,2)^{\intercal} \in Q$ and consequently, there is no other fundamental hole in Q, i.e. $F = \{(1,1)^{\intercal}\}$.

Computing minimal inhomogenous solutions

The (finitely many) minimal inhomogeneous solutions to the above linear system can be computed, for example, with 4ti2.

Example cont. Let $f = (1,1)^{\mathsf{T}}$ and consider $(f+Q) \cap Q$. The linear system to solve is

Example cont

4ti2 gives the following 5 minimal inhomogeneous solutions (λ, μ) to system (1):

$$\begin{array}{rccc} (\lambda,\mu) & \to & z = f + A\lambda \\ (0,0,0,2,0,0,3,0)^{\mathsf{T}} & \to & (3,9)^{\mathsf{T}} \\ (0,1,0,0,1,0,1,0)^{\mathsf{T}} & \to & (2,3)^{\mathsf{T}} \\ (0,0,1,0,1,0,0,1)^{\mathsf{T}} & \to & (2,4)^{\mathsf{T}} \\ (0,0,1,0,0,2,0,0)^{\mathsf{T}} & \to & (2,4)^{\mathsf{T}} \\ (0,0,0,1,0,1,1,0)^{\mathsf{T}} & \to & (2,5)^{\mathsf{T}} \end{array}$$

Thus, we have $\{(2,3)^{\intercal}, (2,4)^{\intercal}, (2,5)^{\intercal}, (3,9)^{\intercal}\}$.

Computing the holes in f + Q

Let $I_{A,f} \in \mathbb{Q}[x_1, \ldots, x_n]$ be the monomial ideal generated by

$$I_{A,f} = \langle x^{\lambda} : \lambda \in \mathbb{Z}_{+}^{n}, f + A\lambda \in (f + Q) \cap Q \rangle.$$

Note. If $\operatorname{cone}(A)$ is pointed, there are only finitely many $\lambda \in \mathbb{Z}_+^n$ such that $f + A\lambda = z$ for each $z \in f + Q$. Thus, by solving $f + A\lambda = z, \lambda \in \mathbb{Z}_+^n$ for all minimal inhomogenuous solutions in $(f + Q) \cap Q$, we can find a finite generating set for $I_{A,f}$.

Note. While the monomial x^{λ} corresponds to $z = f + A\lambda \in f + Q$, we have $z \in (f + Q) \cap Q$ if and only if $x^{\lambda} \in I_{A,f}$. Thus, the set of holes in f + Q corresponds to the set of standard monomials of the monomial ideal $I_{A,f}$.

Example cont

Construct the generators of the monomial ideal $I_{A,f}$ by finding all representations of the form $z = f + A\lambda, \lambda \in \mathbb{Z}_+^4$ for each z in $(f + Q) \cap Q$ for each $z \in \{(2,3)^\intercal, (2,4)^\intercal, (2,5)^\intercal, (3,9)^\intercal\}$.

$$z = f + A\lambda$$

$$(2,3)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,1,0,0)^{\mathsf{T}}$$

$$(2,4)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,1,0)^{\mathsf{T}}$$

$$(2,5)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,0,1)^{\mathsf{T}}$$

$$(3,9)^{\mathsf{T}} = (1,1)^{\mathsf{T}} + A(0,0,0,4)^{\mathsf{T}}$$

Example

Thus, we get the monomial ideal

$$I_{A,f} = \langle x_2, x_3, x_4 \rangle,$$

whose set of standard monomials is $\{x_1^{\alpha} : \alpha \in \mathbb{Z}_+\}$.

Thus, the set of holes in $f+{\boldsymbol{Q}}$ is

$$\{f + \alpha A_{.1} : \alpha \in \mathbb{Z}_+\} = \{(1, 1)^{\mathsf{T}} + \alpha(1, 0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+\}$$

Computing *Q*-minimal saturation points

Want to compute $\min(S; Q)$, the set of all Q-minimal saturation points of Q. Note that $\min(S; Q)$ is always finite.

We have the following equivalences:

$$\begin{split} s \in S &\Leftrightarrow s \in Q \text{ and } s + Q_{\text{sat}} \subseteq Q \quad (\text{by definition}) \\ \Leftrightarrow s \in Q \text{ and } s + H \subseteq Q \quad (Q_{\text{sat}} = Q \cup H \text{ and } s + Q \subseteq Q, \forall s \in Q \\ \Leftrightarrow s \in Q \text{ and } s + F \subseteq Q \quad (H \subseteq F + Q) \\ \Leftrightarrow s + f \in f + Q \text{ and } s + f \subseteq Q \quad \forall f \in F \\ \Leftrightarrow s + f \in (f + Q) \cap Q \quad \forall f \in F. \end{split}$$

Consequently, we have

$$s \in S \Leftrightarrow s \in \bigcap_{f \in F} [((f+Q) \cap Q) - f]$$

and thus, with $s = A\lambda$ for some $\lambda \in \mathbb{Z}^n_+$ (as $s \in Q$), we get

$$s \in S \Leftrightarrow x^{\lambda} \in \bigcap_{f \in F} I_{A,f} =: I_A,$$

by definition of $I_{A,f}$. I_A is a monomial ideal and can be found algorithmically, for example with the help of Gröbner bases. The elements $s \in \min(S; Q)$ correspond exactly to the (finitely many!) ideal generators x^{λ} of I_A via the relation $s = A\lambda$.

Example cont

In our example, we have $I_A = I_{A,f} = \langle x_2, x_3, x_4 \rangle$, as there exists only one fundamental hole f. The three generators of I_A correspond to the three Q-minimal saturation points $(1,2)^{\intercal}$, $(1,3)^{\intercal}$, and $(1,4)^{\intercal}$.

Deciding whether H is finite or not

Thm. [Takemura and Y., 2006]

Let $B = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_L \}$ denote the Hilbert basis of Q_{sat} . If $\boldsymbol{b}_l + \lambda \boldsymbol{a}_i \in Q$ for some $\lambda \in \mathbb{Z}$, let

$$\bar{\mu}_{li} = \min\{\lambda \in \mathbb{Z} \mid \boldsymbol{b}_l + \lambda \boldsymbol{a}_i \in Q\}$$

and $\bar{\mu}_{li} = \infty$ otherwise.

Then *H* is finite if and only if $\bar{\mu}_{li} < \infty$ for all $l = 1, \ldots, L$ and all $i = 1, \ldots, n$.

Remark. For each $1 \le i \le n$, let $\tilde{Q}_{(i)} = \{\sum_{j \ne i} \lambda_j a_j \mid \lambda_j \in \mathbb{Z}_+, j \ne i\}$ be the semigroup spanned by $a_j, j \ne i$. For each extreme a_i and for each $b_l \notin Q$, we only have to check

$$\boldsymbol{b}_l \in (-\mathbb{Z}_+\boldsymbol{a}_i) + \tilde{Q}_{(i)}, \text{ for } l = 1, \dots, L.$$

Thm. [Takemura and Y., 2006]

The following statements are equivalent.

- 1. $\min(S; S)$, the set of all S-minimal points in S, is finite.
- 2. cone(S) is a rational polyhedral cone.
- 3. There is some $s \in S$ on every extreme ray of K.
- 4. H is finite.
- 5. \bar{S} is finite.

Applications to contingency tables

 $2 \times 2 \times 2 \times 2$ tables with 2-margins.

The semigroup has 16 generators a_1, \ldots, a_{16} in \mathbb{Z}^{24} .

The Hilbert basis of the cone generated by these 16 vectors contains 17 vectors b_1, \ldots, b_{17} . The first 16 vectors are the same as a_i , i.e. $b_i = a_i$, $i = 1, \ldots, 16$. The 17-th vector b_{17} is

$$\boldsymbol{b}_{17} = (1 \ 1 \ \dots \ 1)^t$$

consisting of all 1's.

Thus, $b_{17} \notin Q$. Then we set the 16 systems of linear equations such that:

$$P_j: \quad \boldsymbol{b}_1 x_1 + \boldsymbol{b}_2 x_2 + \dots + \boldsymbol{b}_{16} x_{16} = \boldsymbol{b}_{17}$$
$$x_j \in \mathbb{Z}_-, \ x_i \in \mathbb{Z}_+, \ \text{for } i \neq j,$$

for $j = 1, 2, \cdots, 16$.

Using LattE, we showed that the 16 systems of linear equations have integral solutions.

Thus by theorems above, H, \overline{S} , and $\min(S;S)$ are finite.

 $2 \times 2 \times 2 \times 2$ tables with 2-margins and 3-margin i.e. [12][13][14][123] and with levels of 2 on each node.

The semigroup is generated by 16 vectors in \mathbb{Z}^{12} .

The Hilbert basis consists of these 16 vectors and two additional vectors

Thus, $\boldsymbol{b}_{17}, \, \boldsymbol{b}_{18} \not\in Q$.

Then we set the system of linear equations such that:

$$b_1 x_1 + b_2 x_2 + \dots + b_{16} x_{16} = b_{17}$$

 $x_1 \in \mathbb{Z}_-, \ x_i \in \mathbb{Z}_+, \ \text{ for } i = 2, \dots, 16.$

We solved the system via lrs, CDD and LattE.

We noticed that this system has no real solution (infeasible).

Thus by theorems above, H, \bar{S} , and $\min(S;S)$ are infinite.

Prop. [Takemura and Y., 2006]

 $3 \times 4 \times 7$ table with 2-margins has infinite number of holes.

Sketch of pf.

					sum
	С	0	0	0	С
	0	0	0	0	0
	0	0	0	0	0
sum	С	0	0	0	С

Table 1: the 7-th 3×4 slice is uniquely determined by its row and its column sums. c is an arbitrary positive integer. Thus for each choice of positive integer the beginning $3 \times 4 \times 6$ part remains to be a hole. Since the positive integer is arbitrary, $3 \times 4 \times 7$ table has infinite number of holes.

Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem 6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality (i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not known only for the following three cases:

 $5 \times 5 \times 3$, $5 \times 4 \times 3$, $4 \times 4 \times 3$.

Note. $4 \times 4 \times 3$ is solved! We want to decide whether semigroups of these tables above are normal or not.

Also we want to decide whether $3 \times 4 \times 6$ table with 2-margins have a finite number of holes.

Questions?

A preprint is available at arxiv:

http://arxiv.org/abs/math.CO/0607599

Thank you....