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Phylogeny

Phylogenetic trees illustrate the evolutionary relations among groups of
organisms.
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Why we care?

• We can analyze changes that have occurred in evolution of different
species.

• Phylogenetic relations among different species help predict which species
might have similar functions.

• We can predict changes occurring in rapid changing species, such as HIV
virus.
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Input Data for Phylogeny

• Numerical data

– Distance between different species.
Each branch length represents evolutional time along an edge of the
tree.
We can derive distances from DNA sequences.

• Discrete characters

– Each character has finite number of states
e.g. DNA = {A, T,C,G}.
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Distance Based Methods

We reconstruct phylogenetic trees with distance based methods.

Input: Pair-wise distances from n many species.

Output: An unrooted edge weighted binary tree with n leaves.

Distance based methods operate two steps:

1. Compute pair-wise distance between every pair of taxa.

2. With all pair-wise distances, compute tree topology and all branch length.
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Distance Matrix

A distance matrix for a tree T is a matrix M whose entry Mij stands for
the mutation distance between i and j.
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Distance Matrix

1 2 3 4 5 6
1 0 6 8 9 12 11
2 6 0 6 7 10 9
3 8 6 0 3 6 5
4 9 7 3 0 5 4
5 12 10 6 5 0 5
6 11 9 5 4 5 0

Table 1: Distance matrix M for the example.

Let D(ij) be a pairwise distance between i and j.
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Definitions

Def. A distance matrix M is a metric iff M satisfies:

• Symmetric: Mij = Mji and Mii = 0.

• Triangle Inequality: Mik + Mjk ≥ Mij.

Def. M is an additive metric iff there exists a tree T s.t.

• Every edge has a positive weight and every leaf is labeled by a distinct
species in the given set.

• For every pair of i, j, Mij = the sum of the edge weights along the path
from i to j.

Also we call such T an additive tree.
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If we want to reconstruct an additive tree T from an additive metric M , we
can do in polynomial time on n.

Problem:

• A distance matrix M obtained from an alignment of DNA sequences is
a non-additive metric.

• If M is not additive, finding the nearest additive metric M̄ is NP-hard
(by Farach, Kannan, and Warnow).

We are interested in estimating the additive tree T of M̄ in polynomial
time.
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Neighbor Joining Method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Thm. [Saitou-Nei and Studier-Keppler]

{i, j} is a cherry if Aij = D(ij)−(ri+rj)/(n−2), where ri :=
∑n

k=1 D(ik),
is minimal.

Neighbor Joining Method:

Idea. Initialize a star-like tree. Then find a cherry {i, j} and computing
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.
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Neighbor Joining Method
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Advantages and Disadvantages

The most popular and widely used distance based method for reconstructing
a phylogenetic tree.

Advantages:

• Fast (the time complexity of this algorithm is O(n3)).

• Permits lineages with largely different branch lengths.

Disadvantages:

• Sequence information is reduced.

• Gives only one possible tree.
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Neighbor Joining with Subtree Weights

• Extended the Neighbor Joining method with the weights of m-leaf
subtrees.

• Increasing 2 ≤ m ≤ n+1
2 , reconstructed tree from our method gets closer

to the additive tree of the nearest additive matric.

• If m = 3, the time complexity of our new method is O(n3), which is
the same as the Neighbor Joining with pairwise distances and a tree
reconstructed by our method is more accurate than the one with pairwise
distances.

Note: If m = 2, then our method is the Neighbor Joining method with
pairwise distances.

Algebraic Geometry Seminar 13



Ruriko Yoshida

Notations and Definitions

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of
all m-element subsets of [n].

Def. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0.

In the context of phylogenetic trees, the map D(i1, i2, ..., im) may measure
the weight of a subtree that spans the leaves i1, i2, ..., im.

Denote D(i1i2 . . . im) := D(i1, i2, ..., im).
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Weights of Subtrees in T
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D(ijkl) is the total branch length of the subtree in green. Also D(x1x2)
is the total branch length of the subtree in pink and it is also a pairwise
distance between x1 and x2.

Algebraic Geometry Seminar 15



Ruriko Yoshida

Thm. [Levy, Pachter, Y.] Let Dm be an m-dissimilarity map on n leaves,

Dm :
(

[n]
m

)

→ R≥0, and define

S(ij) :=
∑

X∈([n−i−j]
m−2 )

Dm(ijX).

If the weights Dm correspond to m-subtree weights of a tree T then S(ij)
is a tree metric.

Furthermore, if T ′ is the additive tree corresponding to this tree metric then
T ′ and T have the same tree topology and there is an invertible linear map
between their edge weights.

Note. This means that if we reconstruct T ′, then we can reconstruct T .
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Computing edge weights on T

Lemma 1. [Levy, Pachter, Y.] If e is an internal edge of T (equivalently
T ′), then

wT ′(e) =
1

2
[

(

|L1(e)| − 2

m − 2

)

+

(

|L2(e)| − 2

m − 2

)

]wT (e)

where L1(e) and L2(e) are the two leaf sets of T − e.
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For an edge e ∈ E(T ) and a leaf i, Li(e) denotes the set of leaves in T − e
that are in the same connected component as i.

If i = 3, then L3(e) = {3, 4, 5, 6}.
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Lemma 2. [Levy, Pachter, Y.] Denote the edges adjacent to the leaves by
e1, . . . , en.

Let Ci =
∑

e∈int(E(T ))

(

(

n−2
m−2

)

−
(

|Li(e)|−2
m−2

)

)

wT (e). Then





wT (e1)
...
wT (en)



 = A−1





2wT ′(e1) − C1
...
2wT ′(en) − Cn



 ,

where A−1 = 1

2(n−2
m−2)

(

I − m−2
(m−1)(n−2)J

)

.
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Neighbor Joining with Subtree Weights

Input: n many DNA sequences.

Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the maximum likelihood.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain
additive tree T ′.

4. Using Lemma 1, obtain a weight of each internal edge of T .

5. Using Lemma 2, obtain a weight of each leaf edge of T .
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Complexity

Lemma. [Levy, Pachter, Y.] If m ≥ 3, the time complexity of this algorithm
is O(nm), where n is the number of leaves of T and if m = 2, then the
time complexity of this algorithm is O(n3).

Sketch of Proof: If m ≥ 3, the computation of S(ij) is O(nm) (both
steps are trivially parallelizable). The subsequent neighbor-joining is O(n3)
and edge weight reconstruction is O(n2). If m = 2, then the subsequent
neighbor-joining is O(n3) which is greater than computing S(ij). So, the
time complexity is O(n3).

Note: The running time complexity of the algorithm is O(n3) for both
m = 2 and m = 3.
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Cherry Picking Theorem

Thm. [Levy, Pachter, Y.] Let T be a tree with n leaves and no nodes
of degree 2 and let m be an integer satisfying 2 ≤ m ≤ n − 2. Let
D :

(

[n]
m

)

→ R≥0 be the m-dissimilarity map corresponding to the weights
of the subtrees of size m in T . If QD(ij) is a minimal element of the matrix

QD(ij) =

(

n − 2

m − 1

)

∑

X∈([n−i−j]
m−2 )

D(ijX)−
∑

X∈([n−i]
m−1)

D(iX)−
∑

X∈([n−j]
m−1)

D(jX)

then {i, j} is a cherry in the tree T .

Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from
Cherry Picking Theorem.
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Simulation Results
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Consider two tree models...

Modeled from Strimmer and von Haeseler.
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We generate 500 replications with the Jukes-Cantor model via a software
evolver from PAML package.

The number represents a percentage which we got the same tree topology.

l a/b m=2 m=3 m=4 fastDNAml
500 0.01/0.07 68.2 76.8 80.4 74.8

0.02/0.19 54.2 61.2 73.6 55.6
0.03/0.42 10.4 12.6 23.8 12.6

1000 0.01/0.07 94.2 96 97.4 96.6
0.02/0.19 87.6 88.6 96.2 88
0.03/0.42 33.4 35 52.4 33.6

Table 2: Success Rates for the model T1.
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l a/b m=2 m=3 m=4 fastDNAml
500 0.01/0.07 84.4 86 85.6 88.4

0.02/0.19 68.2 72 73.2 88.4
0.03/0.42 18.2 29.2 36.2 87.4

1000 0.01/0.07 95.6 97.8 97.4 99.4
0.02/0.19 88.4 89.6 93.4 99.8
0.03/0.42 40 48.2 57.6 96.6

Table 3: Success Rates for the model T2.
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Questions??
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Paper and Software

The paper will be available soon at Arxiv

Software package Shinrin will be available soon.

Download at http://bio.math.berkeley.edu/mjoin/
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Thank you...
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