Neighbor Joining with Subtree Weights

Ruriko Yoshida
Dept. of Mathematics Duke University
Joint work with Dan Levy and Lior Pachter
www.math.duke.edu/~ruriko

September 28th, 2004

Phylogeny

Phylogenetic trees illustrate the evolutionary relations among groups of organisms.

Why we care?

- We can analyze changes that have occurred in evolution of different species.
- Phylogenetic relations among different species help predict which species might have similar functions.
- We can predict changes occurring in rapid changing species, such as HIV virus.

Input Data for Phylogeny

- Numerical data
- Distance between different species. Each branch length represents evolutional time along an edge of the tree.
We can derive distances from DNA sequences.
- Discrete characters
- Each character has finite number of states e.g. DNA $=\{A, T, C, G\}$.

Distance Based Methods

We reconstruct phylogenetic trees with distance based methods.

Input: Pair-wise distances from n many species.
Output: An unrooted edge weighted binary tree with n leaves.
Distance based methods operate two steps:

1. Compute pair-wise distance between every pair of taxa.
2. With all pair-wise distances, compute tree topology and all branch length.

Distance Matrix

A distance matrix for a tree T is a matrix M whose entry $M_{i j}$ stands for the mutation distance between i and j.

Distance Matrix

	1	2	3	4	5	6
1	0	6	8	9	12	11
2	6	0	6	7	10	9
3	8	6	0	3	6	5
4	9	7	3	0	5	4
5	12	10	6	5	0	5
6	11	9	5	4	5	0

Table 1: Distance matrix M for the example.
Let $D(i j)$ be a pairwise distance between i and j.

Definitions

Def. A distance matrix M is a metric iff M satisfies:

- Symmetric: $M_{i j}=M_{j i}$ and $M_{i i}=0$.
- Triangle Inequality: $M_{i k}+M_{j k} \geq M_{i j}$.

Def. M is an additive metric iff there exists a tree T s.t.

- Every edge has a positive weight and every leaf is labeled by a distinct species in the given set.
- For every pair of $i, j, M_{i j}=$ the sum of the edge weights along the path from i to j.

Also we call such T an additive tree.

If we want to reconstruct an additive tree T from an additive metric M, we can do in polynomial time on n.

Problem:

- A distance matrix M obtained from an alignment of DNA sequences is a non-additive metric.
- If M is not additive, finding the nearest additive metric \bar{M} is NP-hard (by Farach, Kannan, and Warnow).

We are interested in estimating the additive tree T of \bar{M} in polynomial time.

Neighbor Joining Method

Def. We call a pair of two distinct leaves $\{i, j\}$ a cherry if there is exactly one intermediate node on the unique path between i and j.

Thm. [Saitou-Nei and Studier-Keppler]
$\{i, j\}$ is a cherry if $A_{i j}=D(i j)-\left(r_{i}+r_{j}\right) /(n-2)$, where $r_{i}:=\sum_{k=1}^{n} D(i k)$, is minimal.

Neighbor Joining Method:
Idea. Initialize a star-like tree. Then find a cherry $\{i, j\}$ and computing branch length from the interior node x to i and from x to j. Repeat this process recursively until we find all cherries.

Neighbor Joining Method

Advantages and Disadvantages

The most popular and widely used distance based method for reconstructing a phylogenetic tree.

Advantages:

- Fast (the time complexity of this algorithm is $O\left(n^{3}\right)$).
- Permits lineages with largely different branch lengths.

Disadvantages:

- Sequence information is reduced.
- Gives only one possible tree.

Neighbor Joining with Subtree Weights

- Extended the Neighbor Joining method with the weights of m-leaf subtrees.
- Increasing $2 \leq m \leq \frac{n+1}{2}$, reconstructed tree from our method gets closer to the additive tree of the nearest additive matric.
- If $m=3$, the time complexity of our new method is $O\left(n^{3}\right)$, which is the same as the Neighbor Joining with pairwise distances and a tree reconstructed by our method is more accurate than the one with pairwise distances.

Note: If $m=2$, then our method is the Neighbor Joining method with pairwise distances.

Notations and Definitions

Notation. Let $[n]$ denote the set $\{1,2, \ldots, n\}$ and $\binom{[n]}{m}$ denote the set of all m-element subsets of $[n]$.

Def. A m-dissimilarity map is a function $D:\binom{[n]}{m} \rightarrow \mathbb{R}_{\geq 0}$.
In the context of phylogenetic trees, the map $D\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ may measure the weight of a subtree that spans the leaves $i_{1}, i_{2}, \ldots, i_{m}$.

Denote $D\left(i_{1} i_{2} \ldots i_{m}\right):=D\left(i_{1}, i_{2}, \ldots, i_{m}\right)$.

Weights of Subtrees in T

$D(i j k l)$ is the total branch length of the subtree in green. Also $D\left(x_{1} x_{2}\right)$ is the total branch length of the subtree in pink and it is also a pairwise distance between x_{1} and x_{2}.

Thm. [Levy, Pachter, Y.] Let D_{m} be an m-dissimilarity map on n leaves, $D_{m}:\binom{[n]}{m} \rightarrow \mathbb{R}_{\geq 0}$, and define

$$
S(i j):=\sum_{X \in\binom{[n-i-j]}{m-2}} D_{m}(i j X) .
$$

If the weights D_{m} correspond to m-subtree weights of a tree T then $S(i j)$ is a tree metric.

Furthermore, if T^{\prime} is the additive tree corresponding to this tree metric then T^{\prime} and T have the same tree topology and there is an invertible linear map between their edge weights.

Note. This means that if we reconstruct T^{\prime}, then we can reconstruct T.

Computing edge weights on T

Lemma 1. [Levy, Pachter, Y.] If e is an internal edge of T (equivalently T^{\prime}), then

$$
w_{T^{\prime}}(e)=\frac{1}{2}\left[\binom{\left|L_{1}(e)\right|-2}{m-2}+\binom{\left|L_{2}(e)\right|-2}{m-2}\right] w_{T}(e)
$$

where $L_{1}(e)$ and $L_{2}(e)$ are the two leaf sets of $T-e$.

For an edge $e \in E(T)$ and a leaf $i, L_{i}(e)$ denotes the set of leaves in $T-e$ that are in the same connected component as i.

$$
\text { If } i=3 \text {, then } L_{3}(e)=\{3,4,5,6\}
$$

Lemma 2. [Levy, Pachter, Y.] Denote the edges adjacent to the leaves by e_{1}, \ldots, e_{n}.

Let $\left.C_{i}=\sum_{e \in \operatorname{int}(E(T))}\binom{n-2}{m-2}-\binom{\left|L_{i}(e)\right|-2}{m-2}\right) w_{T}(e)$. Then

$$
\left(\begin{array}{c}
w_{T}\left(e_{1}\right) \\
\vdots \\
w_{T}\left(e_{n}\right)
\end{array}\right)=A^{-1}\left(\begin{array}{l}
2 w_{T^{\prime}}\left(e_{1}\right)-C_{1} \\
\vdots \\
2 w_{T^{\prime}}\left(e_{n}\right)-C_{n}
\end{array}\right),
$$

where $A^{-1}=\frac{1}{2\binom{n-2}{m-2}}\left(\mathbf{I}-\frac{m-2}{(m-1)(n-2)} \mathbf{J}\right)$.

Neighbor Joining with Subtree Weights

Input: n many DNA sequences.
Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the maximum likelihood.
2. Compute $S(i j)$ for each pair of leaves i and j.
3. Apply Neighbor Joining method with a tree metric $S(i j)$ and obtain additive tree T^{\prime}.
4. Using Lemma 1, obtain a weight of each internal edge of T.
5. Using Lemma 2, obtain a weight of each leaf edge of T.

Complexity

Lemma. [Levy, Pachter, Y.] If $m \geq 3$, the time complexity of this algorithm is $O\left(n^{m}\right)$, where n is the number of leaves of T and if $m=2$, then the time complexity of this algorithm is $O\left(n^{3}\right)$.

Sketch of Proof: If $m \geq 3$, the computation of $S(i j)$ is $O\left(n^{m}\right)$ (both steps are trivially parallelizable). The subsequent neighbor-joining is $O\left(n^{3}\right)$ and edge weight reconstruction is $O\left(n^{2}\right)$. If $m=2$, then the subsequent neighbor-joining is $O\left(n^{3}\right)$ which is greater than computing $S(i j)$. So, the time complexity is $O\left(n^{3}\right)$.

Note: The running time complexity of the algorithm is $O\left(n^{3}\right)$ for both $m=2$ and $m=3$.

Cherry Picking Theorem

Thm. [Levy, Pachter, Y.] Let T be a tree with n leaves and no nodes of degree 2 and let m be an integer satisfying $2 \leq m \leq n-2$. Let $D:\binom{[n]}{m} \rightarrow \mathbb{R}_{\geq 0}$ be the m-dissimilarity map corresponding to the weights of the subtrees of size m in T. If $Q_{D}(i j)$ is a minimal element of the matrix

$$
Q_{D}(i j)=\left(\frac{n-2}{m-1}\right) \sum_{X \in\binom{[n-i-j]}{m-2}} D(i j X)-\sum_{X \in\binom{n-i]}{m-1}} D(i X)-\sum_{X \in\binom{[n-j]}{m-1}} D(j X)
$$

then $\{i, j\}$ is a cherry in the tree T.
Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry Picking Theorem.

Simulation Results

Consider two tree models...

Modeled from Strimmer and von Haeseler.

T1

T2

We generate 500 replications with the Jukes-Cantor model via a software evolver from PAML package.

The number represents a percentage which we got the same tree topology.

I	a / b	$\mathrm{m}=2$	$\mathrm{~m}=3$	$\mathrm{~m}=4$	fastDNAmI
500	$0.01 / 0.07$	68.2	76.8	80.4	74.8
	$0.02 / 0.19$	54.2	61.2	73.6	55.6
	$0.03 / 0.42$	10.4	12.6	23.8	12.6
1000	$0.01 / 0.07$	94.2	96	97.4	96.6
	$0.02 / 0.19$	87.6	88.6	96.2	88
	$0.03 / 0.42$	33.4	35	52.4	33.6

Table 2: Success Rates for the model T_{1}.

I	a / b	$\mathrm{m}=2$	$\mathrm{~m}=3$	$\mathrm{~m}=4$	fastDNAml
500	$0.01 / 0.07$	84.4	86	85.6	88.4
	$0.02 / 0.19$	68.2	72	73.2	88.4
	$0.03 / 0.42$	18.2	29.2	36.2	87.4
1000	$0.01 / 0.07$	95.6	97.8	97.4	99.4
	$0.02 / 0.19$	88.4	89.6	93.4	99.8
	$0.03 / 0.42$	40	48.2	57.6	96.6

Table 3: Success Rates for the model T_{2}.

Questions??

Paper and Software

The paper will be available soon at Arxiv

Software package Shinrin will be available soon.

Download at http://bio.math.berkeley.edu/mjoin/

Thank you...

