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Dose-response clinical trial

Drug\Usefulness −− − ± + ++ + + + Total
Placebo 3 6 37 9 15 1 71
AF3mg 7 4 33 21 10 1 76
AF6mg 5 6 21 16 23 6 77

[C. Hirotsu, 1997]

The purpose of this trial is to find out an optimal dose, where a dose level is
considered to be optimal if it significantly improves the efficacy over lower
doses (−: undesirable, ±: not useful, +: useful).

In our model we will consider main effects of two factors. The main effects
correspond to rows sums and columns sums. In addition we will consider
interaction of two factors with a certain joint threshold.
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• After a certain combination of levels we get extra interaction effect or
non-effect, not explained by the two factors separately. Namely, the
effect of combination of two treatments is larger or smaller than the sum
of the effects of two factors.

• This model describes the interaction effect between the row and column
factors in terms of a single parameter γ. We want to test for interaction
comparing it to “no interaction”.
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Dose-response clinical trial

We propose that the cell (2, 4) is a threshold.

Drug\Usefulness −− − ± + ++ + + + Total
Placebo 3 6 37 9 15 1 71
AF3mg 7 4 33 21 10 1 76
AF6mg 5 6 21 16 23 6 77

[C. Hirotsu, 1997]

We want to test the goodness-of-fit of this threshold.
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Two-Way Change-Point Model
Let X = {Xij} be a R × C table Xij ∈ N, i = 1, . . . , R, j = 1, . . . , C.

Xij ∼ Poi(µij) iid

where µij = ln(θij).

Consider the generalized linear model with a canonical linear predictor of
the form:

θij = λ + λR
i + λC

j + λRC
ij .

for i = 1, . . . , R and j = 1, . . . , C.

Two-Way Change-Point model is a special case in which for some
(i0, j0), 1 ≤ i0 ≤ R, 1 ≤ j0 ≤ C

λRC
ij =

{

γ if 1 ≤ i ≤ i0, 1 ≤ j ≤ j0

0 else.
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The sufficient statistics for the Two-Way Change-Point model include the
row and column margins and, in addition, the sum of the cell counts
with 1 ≤ i ≤ i0, 1 ≤ j ≤ j0. Hence, the conditional distribution of the
table counts given the margins is the same regardless of the values of the
parameters in the model.

In general let I = {(i, j) | 1 ≤ i ≤ R, 1 ≤ j ≤ C} and let S be a subset of
I. Then

λRC
ij =

{

γ if (i, j) ∈ S

0 else.

This model is called the subtable sum model. Thus the sufficient statistics
for subtable sum model include the row and column margins and, in addition,
the sum of the cell counts with (i, j) ∈ S.
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Hypothesis

As a preliminary step, we test:

H0 : λRC
ij = 0. no interaction.

H1 : λRC
ij not constant over all cells.

The fit of independence is not enough, one of the possiblity is to look for a
change point.

H0 : λRC
ij =

{

γ if (i, j) ∈ S

0 else.

H1 : λRC
ij not constant over all cells.

Want: the χ2 goodness-of-fit of this threshold.
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Exact p-value computation

Let X̂ be the MLE of the data under the model. Then Pearson’s χ2

statistics is

f(X) =

R
∑

i=1

C
∑

j=1

(X̂ij − Xij)
2

X̂ij

.

An exact permutation test based on the χ2 statistic is constructed as
follows. The p-value of this test is:

p = Ep[I{f(X)≥f(x)}|satisfying margins]

where x is an observed table and p is the hypergeometric distribution.
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In general we approximate the expected value by generating random draws
from the hypergeometric distribution and estimate

p̂ =
1

N

N
∑

i=1

I{f(xi)≥f(x)}

where N is the number of draws x
1, · · · ,xN iid from the hypergoemetric

conditional on the sufficient statistics under H0.

Note: This is the only possible method in situations where counts are very
small or the number of tables satisfying margins is very small.

Question: How can we generate random draws from this distribution?

Answer: Apply Diaconis-Sturmfels algorithm to the MCMC technique.
Diaconis-Sturmfels algorithm is the only method guaranteed to connect the
MC.
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What is a set of moves which connect all feasible contingency tables
satisfying these margins?

In this particular example, this problem under the two-way change point
model is called the two-way change point problem [Hirotsu, 1997].

Note: We can generalize this problem by fixing the sum of any subtable in
addition to row and column sums.

Question: Finding a set of moves which connect all feasible 2-way
contingency tables satisfying the row sums, column sums, and a sum
of a subtable.
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Example

Suppose we have the following table and we want to fix the row and column
sums, and the sum of cells in blue.

Total
2 2 2 6
2 2 2 6

total 4 4 4
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Exact p-value computation

Note that the row sums, column sums, and a sum
∑i0

i=1

∑j0
j=1 xobs

ij are the
sufficient statistics under H0. For example, we have

Total
x1,1 x1,2 x1,3 6
x2,1 x2,2 x2,3 6

Total 4 4 4

Note: There are 5 tables satisfying these margins in this example. We
counted using a software LattE.
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From the constraints we can set up the system of linear equations.

e.g. For our 2 × 3 table, we have:

x1,1 +x2,1 = 4
x1,2 +x2,2 = 4

x1,3 +x2,3 = 4
x1,1 +x1,2 +x1,3 = 6

x2,1 +x2,2 +x2,3 = 6
x1,1 = 2

xi,j ∈ Z+

where Z+ = {0, 1, 2, · · · }.

In general, we can set up a system {x ∈ Z
d
+|Ax = b} for any tables.

Note: Thus, moves connect all integral points inside a feasible region
Pb = {x ∈ R

d|Ax = b, x ≥ 0} 6= ∅.
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What is a Markov Basis??

Suppose Pb = {x ∈ R
d|Ax = b, x ≥ 0} 6= ∅ and let M be a finite set such

that M ⊂ {x ∈ Z
d|Ax = 0}.

We define the graph Gb such that:

• Nodes of Gb are the lattice points inside Pb.

• We draw an undirected edge between a node u and a node v iff u−v ∈ M .

Definition : M is called a Markov basis if Gb is a connected graph for all
b with Pb 6= ∅.

Why do we care?: A Markov basis is the only known set of moves which
guarantees to connect all tables with any constraints.
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Example

To make it simple we just removed a constraint, that is, a sum of colored
cells.

Total
? ? ? ? ? ? ? ? ? 6
? ? ? ? ? ? ? ? ? 6

Total 4 4 4

Table 1: 2 × 3 tables with 1-marginals.

There are 19 tables satisfying these margins. We counted using a software
LattE.
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There are 3 elements in a Markov basis modulo signs.

In fact such moves are called basic moves.
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A table with the marginals plus an element of a Markov basis is also a table
with the given marginals.
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A Markov basis for 2 × 3 tables. An element of the Markov basis is a
undirected edge between integral points in the polytope.
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Fact: For any 2-way contingency tables with row and column sums (without
a sum of a subtable), we know that a set of basic moves forms a Markov
basis.

However: If you add a constraint of a sum of a subtable, then it is not
necessarily true anymore.

For example, if we fix the subtable x1,1 and x2,2 then there are only three
tables such that

2 2 2
2 2 2

,
1 1 4
3 3 0

,
3 3 0
1 1 4

.

and these tables are not connected by basic moves.

Question: When a set of basic moves forms a Markov basis? Find the
necessary and sufficient condition on a subtable.
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Notes

There always exists a Markov basis for tables.

One can compute a Markov basis using algebraic geometry and there are
several nice software to compute a Markov basis, such as 4ti2.

However: In general computing a Markov basis is very hard. Thus, it is
nice if we know the necessary and sufficient condition on a subtable that a
set of basic moves forms a Markov basis.

Note: A minimal Markov basis associate to a matrix A is not unique in
general but for 2-way tables with fixed row sums, column sums, and a sum
of a subtable, a minimal Markov basis associate to a matrix A is unique if
a set of basic moves forms a Markov basis.
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Notation

Suppose we have a R × C table, X = {xij}, xij ∈ N, i = 1, . . . , R,
j = 1, . . . , C.

Let I = {(i, j) | 1 ≤ i ≤ R, 1 ≤ j ≤ C}.

Let S be a subset of I and Sc is the complement of S.
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Necessary and sufficient condition
Here, we give a necessary and sufficient condition on the subtable sum
problem so that a Markov basis consists of basic moves.

P Pt

Figure 1: The pattern P and Pt

A shaded area shows a cell belonging to S.

We call these two patterns in Figure 1 the pattern P and Pt, respectively.
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Necessary and sufficient condition

Theorem: [Hara, Takemura, Y, 2007]

A set of basic moves forms a Markov basis if and only if there exist no
patterns of the form P or Pt in any 2 × 3 and 3 × 2 subtable of S or Sc

after any interchange of rows and columns.
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Go back to example....

If we have the first example,

Total
x1,1 x1,2 x1,3 6
x2,1 x2,2 x2,3 6

Total 4 4 4

then there is no such a subtable in Figure 1 in the subtable of S, thus a set
of basic moves forms a Markov basis.

In fact, There is one basic move in the Markov basis.
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Go back to example....

Using a software 4ti2, we found out that the minimum Markov basis consists
of one move such that:

0 −1 1
0 1 −1

.

This move (multiplied by a sign) connects all three tables such that:

2 2 2
2 2 2

,
2 3 1
2 1 3

,
2 1 3
2 3 1

,
2 4 0
2 0 4

,
2 0 4
2 4 0

.

AMS 25



Ruriko Yoshida

However....

If we have the subtable fixed such that,

Total
x1,1 x1,2 x1,3 6
x2,1 x2,2 x2,3 6

Total 4 4 4

then, a pattern P is in the subtable of S. Thus, a set of basic moves does
not form a Markov basis.

AMS 26



Ruriko Yoshida

Using a software 4ti2, we found out that a minimum Markov basis consists
of one move such that:

1 1 −2
−1 −1 2

This move (multiplied by a sign) connects all three tables such that:

2 2 2
2 2 2

,
1 1 4
3 3 0

,
3 3 0
1 1 4

.
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Example

Suppose we want to move from the left table to the right table such that:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⇒

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

where we fix the row sums, column sums and the sum of blue cell counts.

By our theorem, we should be able to move from the left table to the right
table by basic moves only.
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Example

Indeed we can move as follows:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⇒

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⇒

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⇒

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⇒

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
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Notes

From theoretical viewpoint, it is interesting to study the structure of Markov
bases for cases if S or Sc contains a pattern P or Pt.

A structural zero problem is a particular case of the subtable sum problems.
Various properties of Markov bases are known for structural zero problems.
It is of interest to investigate which properties of Markov bases for structural
zero problem for S can be generalized to subtable sum problem for S.

Question by Hibi: We know that if S or Sc contains a pattern P or Pt,
then the semigroup generated by columns of A is not normal. If not, then
is it normal?

If S or Sc contains a pattern P or Pt, then are there finite or infinite
“holes” (the difference between the semigroup and its saturation)?
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Thank you....
The paper is available at http://arxiv.org/abs/0708.2312.
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