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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of
organisms.
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Why we care?

• Be able to analyze changes occurred in evolution of different species.

• Helps predict which species might have similar functions.

• Predicts changes occurring in rapid changing species, such as HIV virus.
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Application

We would like to assemble the fungi tree of life.

Francois Lutzoni and Rytas Vilgalys Department of Biology, Duke University

1500+ fungal species

http://ocid.nacse.org/research/aftol/about.php
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How can we reconstruct?

We can reconstruct a phylogenetic tree from DNA sequences via:

• The maximum likelihood estimation (MLE) method: it describes an
evolution in terms of a discrete-state continuous-time Markov process.
The substitution rate matrix can be estimated using the expectation
maximization (EM) algorithm.

• Distance based methods: it computes pair-wise distances, which can
be computed easily, and combinatorially reconstruct a tree. The most
popular method is the neighbor-joining (NJ) method.
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However

The MLE method: an exhaustive search for the ML phylogenetic tree is
computationally prohibitive for large data sets.

The NJ method: sequence information is reduced. Especially, the NJ
phylogenetic tree for large data sets loses so much sequence information.

Goal:

• Want an algorithm for simultaneous substitution rate estimation and
phylogenetic tree reconstruction combining the MLE method and the NJ
method.

• Want to apply for reconstructing a tree for large data sets.

Algebraic Biology 2005 6



Ruriko Yoshida

The EMGNJ algorithm

The GNJ method: in 2005, Levy, Y., and Pachter introduced the
generalized neighbor-joining (GNJ) method, which reconstructs a
phylogenetic tree based on comparisons of subtrees rather than pairwise
distances

• The GNJ method uses more sequence information: the resulting tree
should be more accurate than the NJ method.

• The computational time: polynomial in terms of the number of DNA
sequences.

The EMGNJ algorithm: iterates between the EM algorithm for estimating
substitution rates and the generalized NJ method for phylogenetic tree
reconstruction.
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The EM algorithm
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Pairwise sequences

Suppose we have a pair of sequences at a single site such that:
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Assuming time reversibility....
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Complete observation

Suppose we have the complete observation of continuous time Markov
chain x = {xt : 0 ≤ t ≤ T} on the state space Σ = {A, C,G, T}.

-

Time0 Tt1 t2 t3

State

A
G
C
T

t d

t d

t d

t

We wish to estimate the substitution rate matrix Q using Maximum
Likelihood.
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Let Q = (Q(a, b))a,b∈Σ ∈ R
n×n.

The waiting time in a state a is exponentially distributed with parameter
−Q(a, a) and the density for an exponential distribution with parameter r
is r exp(−rt).

The prob. of substituting to state b different from a is: −Q(a, b)/Q(a, a).

So the density for a substitution of a with b at time t is:

(−Q(a,a)) exp(Q(a,a)t)
Q(a,b)

(−Q(a,a))
= Q(a,a) exp(Q(a,a)t)

Q(a,b)

Q(a,a)

= Q(a,b) exp(Q(a,a)t).
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Thus, the likelihood for the complete observation is given by

L(Q, x) = Q(A,A)eQ(A,A)t1Q(A,C)
Q(A,A)Q(C,C)eQ(C,C)(t2−t1)Q(C,A)

Q(C,C)

×Q(A,A)eQ(A,A)(t3−t2)Q(A,G)
Q(A,A)e

Q(G,G)(T−t2)

= eQ(A,A)(t1+(t3−t2))+Q(G,G)(T−t2)+Q(C,C)(t2−t1)Q(A,G)Q(A,C)Q(C,A)

= eQ(A,A)T (A)+Q(G,G)T (G)+Q(C,C)T (C)

×Q(A,G)N(A,G)Q(A,C)N(A,C)Q(C,A)N(C,A).

where T (a) is the total time spent in state a and N(a, b) is the number of
substitutions of a with b.
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More generally...

If Q is parametrized by θ, Q = Qθ, and with x = {x(t) : 0 ≤ t ≤ T}, the
MLE problem for a complete observation is:

max L(θ;x) =





∏

a∈Σ

∏

b 6=a

Qθ(a,b)N(a,b)





[

∏

a∈Σ

exp(Qθ(a,a))T(a)

]

such that θ ∈ Θ.

The log-likelihood for a complete observation becomes

log L(θ;x) =
∑

a∈Σ

T(a)Qθ(a,a) +
∑

a∈Σ

∑

b 6=a

N(a,b) log Qθ(a,b).
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The GTR model

Consider the general time reversible (GTR) model.

Let πa, a ∈ Σ,
∑

a πa = 1, be the stationary distribution of the Markov
chain.

The GTR model has substitution rate matrix:

Qθ =









· θAGπG θACπC θATπT

θAGπA · θGCπC θGTπT

θACπA θGCπG · θCTπT

θATπA θGTπG θCTπC ·









where the diagonal elements are such that each row sums to zero.

The 6 unknown parameters are θ = (θAG, θAC, θAT , θGC, θGT , θCT ).
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Missing data problem
Problem: if we only observe x(0) and x(T )?

Note: the complete log-likelihood is maximized for

θ∗ab =
N(a,b) + N(b,a)

πbT(a) + πaT(b)
, a 6= b. (1)

The EM algorithm:

1. (Expectation Step) Calculate T (a)∗ := E[T (a) : x(0), x(T )] and
N(a, b)∗ := E[N(a, b) : x(0), x(T )].

2. (Maximization Step) Substitute T (a)∗ and N(a, b)∗ into Equation (1).

Iterate between Step 1 and Step 2 until convergence.
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Thm. [Hobolth and Jensen]

Denote the transition matrix P (t) = exp(Qt).

• Time spent in state a

E[T(a)|x(0) = i,x(T) = j] =

∫ T

0

Pia(t)Paj(T − t)dt/Pij(T).

• Number of transitions between states a and b

E[N(a,b)|x(0) = i,x(T) = j] = Q(a,b)

∫ T

0

Pia(t)Pbj(T − t)dt/Pij(T).
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Multiple sequences

We fix the tree topology for a tree T with n leaves. Note that there are
2n − 1 edges in T .

The single site complete log-likelihood becomes

log L(θ;x) =

2n−3
∑

i=1

(

∑

a∈Σ

Ti(a)Qi(a,a) +
∑

a∈Σ

∑

b 6=a

Ni(a,b) log Qi(a,b)
)

where T i(a) is the total time spent in state a on edge i and N i(a, b) is the
number of transitions from a to b on edge i.

Apply the previous theorem and Felsenstein’s peeling algorithm to solve the
problem.
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The GNJ method
MJOIN is available at http://bio.math.berkeley.edu/mjoin/.
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Neighbor Joining Method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Let D(ij) be a pairwise distance between i and j.

Thm. [Saitou-Nei and Studier-Keppler]

Let A ∈ R
n×n such that Aij = D(ij) − (ri + rj)/(n − 2), where ri :=

∑n

k=1 D(ik). {i∗, j∗} is a cherry in T if it minimizes Aij.

Neighbor Joining Method:

Idea. Initialize a star-like tree. Then find a cherry {i, j} and computing
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.

Algebraic Biology 2005 19



Ruriko Yoshida

Neighbor Joining Method
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The GNJ method

• Extended the Neighbor Joining method with the total branch length of
m-leaf subtrees.

• Increasing 2 ≤ m ≤ n − 2, a reconstructed tree from our method gets
closer to the true tree.

• If m = 3, the time complexity of our new method is O(n3), which is
the same as the Neighbor Joining with pairwise distances and a tree
reconstructed by our method is more accurate than the one with pairwise
distances.

Note: If m = 2, then our method is the Neighbor Joining method with
pairwise distances.
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Notation and Definitions

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of
all m-element subsets of [n].

Def. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0.

In the context of phylogenetic trees, the map D(i1, i2, ..., im) measures the
weight of a subtree that spans the leaves i1, i2, ..., im.

Denote D(i1i2 . . . im) := D(i1, i2, ..., im).
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Weights of Subtrees in T

i

j

k

l
x1

x2

D(ijkl) is the total branch length of the subtree in green. Also D(x1x2)
is the total branch length of the subtree in pink and it is also a pairwise
distance between x1 and x2.
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Thm. [Levy, Y., Pachter] Let Dm be an m-dissimilarity map on n leaves of

a tree T , Dm :
(

[n]
m

)

→ R≥0 corresponding m-subtree weights, and define

S(ij) :=
∑

X∈([n]\{i,j}
m−2 )

Dm(ijX).

Then S(ij) is a tree metric.

Furthermore, if T ′ is based on this tree metric S(ij) then there is an
invertible linear map between their edge weights.

Note. This means that if we reconstruct T ′, then we can reconstruct T .
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Computing edge weights on T

Lemma 1. [Levy, Y., Pachter] If e is an internal edge of T (equivalently
T ′), then

wT ′(e) =
1

2
[

(

|L1(e)| − 2

m − 2

)

+

(

|L2(e)| − 2

m − 2

)

]wT (e)

where L1(e) and L2(e) are the two leaf sets of T − e.
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For an edge e and a leaf i, Li(e) denotes the set of leaves in T − e that are
in the same connected component as i.

If i = 3, then L3(e) = {3, 4, 5, 6}.

a r b

1

2

3 4

5
6

e
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Lemma 2. [Levy, Y., Pachter] Denote the edges adjacent to the leaves by
e1, . . . , en.

Let Ci =
∑

e∈int(E(T ))

(

(

n−2
m−2

)

−
(

|Li(e)|−2
m−2

)

)

wT (e). Then





wT (e1)
...
wT (en)



 = A−1





2wT ′(e1) − C1
...
2wT ′(en) − Cn



 ,

where A−1 = 1

2(n−2
m−2)

(

I − m−2
(m−1)(n−2)J

)

.
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Neighbor Joining with Subtree Weights

Input: n DNA sequences and an integer 2 ≤ m ≤ n − 2.

Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the maximum likelihood.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain
additive tree T ′.

4. Using a one-to-one linear transformation, obtain a weight of each internal
edge of T and a weight of each leaf edge of T .
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Complexity

Lemma. [Levy, Pachter, Y.] If m ≥ 3, the time complexity of this algorithm
is O(nm), where n is the number of leaves of T and if m = 2, then the
time complexity of this algorithm is O(n3).

Sketch of Proof: If m ≥ 3, the computation of S(ij) is O(nm) (both
steps are trivially parallelizable). The subsequent neighbor-joining is O(n3)
and edge weight reconstruction is O(n2). If m = 2, then the subsequent
neighbor-joining is O(n3) which is greater than computing S(ij). So, the
time complexity is O(n3).

Note: The running time complexity of the algorithm is O(n3) for both
m = 2 and m = 3.
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Cherry Picking Theorem

Thm. [Levy, Pachter, Y.] Let T be a tree with n leaves and no nodes
of degree 2 and let m be an integer satisfying 2 ≤ m ≤ n − 2. Let
D :

(

[n]
m

)

→ R≥0 be the m-dissimilarity map corresponding to the weights
of the subtrees of size m in T . Suppose we have:

BD(ij) =

(

n − 2

m − 1

)

∑

X∈([n]\{i,j}
m−2 )

D(ijX) −
∑

X∈([n]\{i}
m−1 )

D(iX) −
∑

X∈([n]\{j}
m−1 )

D(jX).

If {i∗, j∗} is a pair such that BD(i∗j∗) is a minimal element of the matrix
then {i∗, j∗} is a cherry in the tree T .

Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from
Cherry Picking Theorem.
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The EMGNJ method
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Algorithm
Input: n DNA sequences and an integer 2 ≤ m ≤ n − 2.

Output: The GTR rates and a phylogenetic tree.

1. Estimate stationary distribution from empirical frequencies.

2. Reconstruct tree using the GNJ method under the JC69 model.

3. Estimate GTR substitution rates and edge lengths from current tree via
the EM algorithm.

4. Reconstruct tree using the GNJ method and current GTR rates.

5. If likelihood is not improved return current tree and GTR rates; otherwise
go to 3.
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Simulation Results
We implemented subroutines of the EMGNJ algorithm, Step 3 and Step 4
with m = 4 under the JC model.
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Find the phylogenetic tree for 21 S-locus receptor kinase (SRK) sequences
involved in the self/nonself discriminating self-incompatibility system of the
mustard family.

Symmetric difference (∆) between 10, 000 trees sampled from the likelihood
function via MCMC and the trees reconstructed by 5 methods.

DNAml(A) is a basic search with no global rearrangements, whereas
DNAml(B) applies a broader search with global rearrangements and 100
jumbled inputs.
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A = sub-routine of the EMGNJ method, B = Saitou-Nei NJ method, C =
fastDNAml, D = DNAml(A), F = DNAml(B), and G = TrExML.

∆ A B C D F G
0 0 0 0 2 3608 0
2 77 0 0 1 471 0
4 3616 171 6 3619 5614 0
6 680 5687 5 463 294 5
8 5615 4134 3987 5636 13 71

10 12 8 5720 269 0 3634
12 0 0 272 10 0 652
14 0 0 10 0 0 5631
16 0 0 0 0 0 7
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Questions??
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Thank you....
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